558 research outputs found
Ab initio calculation of H + He charge transfer cross sections for plasma physics
The charge transfer in low energy (0.25 to 150 eV/amu) H() + He
collisions is investigated using a quasi-molecular approach for the as
well as the first two singlet states. The diabatic potential energy
curves of the HeH molecular ion are obtained from the adiabatic potential
energy curves and the non-adiabatic radial coupling matrix elements using a
two-by-two diabatization method, and a time-dependent wave-packet approach is
used to calculate the state-to-state cross sections. We find a strong
dependence of the charge transfer cross section in the principal and orbital
quantum numbers and of the initial or final state. We estimate the
effect of the non-adiabatic rotational couplings, which is found to be
important even at energies below 1 eV/amu. However, the effect is small on the
total cross sections at energies below 10 eV/amu. We observe that to calculate
charge transfer cross sections in a manifold, it is only necessary to
include states with , and we discuss the limitations of our
approach as the number of states increases.Comment: 14 pages, 10 figure
Emergence and maintenance of biodiversity in an evolutionary food-web model
Ecological communities emerge as a consequence of gradual evolution, speciation, and immigration. In this study, we explore how these processes and the structure of the evolved food webs are affected by species-level properties. Using a model of biodiversity formation that is based on body size as the evolving trait and incorporates gradual evolution and adaptive radiation, we investigate how conditions for initial diversification relate to the eventual diversity of a food web. We also study how trophic interactions, interference competition, and energy availability affect a food web's maximum trophic level and contrast this with conditions for high diversity. We find that there is not always a positive relationship between conditions that promote initial diversification and eventual diversity, and that the most diverse food webs often do not have the highest trophic levels
Cold collisions of C anions with Li and Rb atoms in hybrid traps
We present a theoretical investigation of reactive and non-reactive
collisions of Li and Rb atoms with C molecular anions at low
temperatures in the context of sympathetic cooling in hybrid trap experiments.
Based on recently reported accurate potential energy surfaces for the singlet
and triplet states of the Li-C and Rb-C systems, we show
that the associative electronic detachment reaction is slow if the colliding
partners are in their ground state, but fast if they are excited. The results
are expected to be representative of the alkali-metal series. We also
investigate rotationally inelastic collisions in order to explore the cooling
of the translational and rotational degrees of freedom of C in hybrid
ion-atom traps. The effect of micromotion is taken into account by considering
Tsallis distributions of collision energies. We show that the translational
cooling occurs much more rapidly than rotational cooling and that the presence
of excited atoms leads to losses of anions on a timescale comparable to that of
rotational cooling.Comment: ICPEAC 2019 conferenc
Ab initio calculation of the 66 low lying electronic states of HeH: adiabatic and diabatic representations
We present an ab initio study of the HeH molecule. Using the quantum
chemistry package MOLPRO and a large adapted basis set, we have calculated the
adiabatic potential energy curves of the first 20 , 19
, 12 , 9 , 4 and 2 electronic
states of the ion in CASSCF and CI approaches. The results are compared with
previous works. The radial and rotational non-adiabatic coupling matrix
elements as well as the dipole moments are also calculated. The asymptotic
behaviour of the potential energy curves and of the various couplings between
the states is also studied. Using the radial couplings, the diabatic
representation is defined and we present an example of our diabatization
procedure on the states.Comment: v2. Minor text changes. 28 pages, 18 figures. accepted in J. Phys.
Ro-vibrational analysis of the XUV photodissociation of HeH ions
We investigate the dynamics of the photodissociation of the hydrohelium
cation HeH by XUV radiation with the aim to establish a detailed comparison
with a recent experimental work carried out at the FLASH free electron laser
using both vibrationally hot and cold ions. As shown in previous theoretical
works, the comparison is hindered by the fact that the experimental
ro-vibrational distribution of the ions is unknown. We determine this
distribution using a dissociative charge transfer set-up and the same source
conditions as in the FLASH experiment. Using a non-adiabatic time-dependent
wave packet method, we calculate the partial photodissociation cross sections
for the coupled electronic states of HeH. We find a good agreement
with the experiment for the total cross section into the He + H
dissociative channel. By performing an adiabatic calculation involving the
states, we then show that the experimental observation of the importance
of the electronic states with cannot be well explained theoretically,
especially for cold () ions. We also calculate the relative contributions
to the cross section of the and states. The agreement with the
experiment is excellent for the He + H channel, but only qualitative for
the He + H channel. We discuss the factors that could explain the remaining
discrepancies between theory and experiment.Comment: 10 pages, 8 figure
Robust estimation of microbial diversity in theory and in practice
Quantifying diversity is of central importance for the study of structure,
function and evolution of microbial communities. The estimation of microbial
diversity has received renewed attention with the advent of large-scale
metagenomic studies. Here, we consider what the diversity observed in a sample
tells us about the diversity of the community being sampled. First, we argue
that one cannot reliably estimate the absolute and relative number of microbial
species present in a community without making unsupported assumptions about
species abundance distributions. The reason for this is that sample data do not
contain information about the number of rare species in the tail of species
abundance distributions. We illustrate the difficulty in comparing species
richness estimates by applying Chao's estimator of species richness to a set of
in silico communities: they are ranked incorrectly in the presence of large
numbers of rare species. Next, we extend our analysis to a general family of
diversity metrics ("Hill diversities"), and construct lower and upper estimates
of diversity values consistent with the sample data. The theory generalizes
Chao's estimator, which we retrieve as the lower estimate of species richness.
We show that Shannon and Simpson diversity can be robustly estimated for the in
silico communities. We analyze nine metagenomic data sets from a wide range of
environments, and show that our findings are relevant for empirically-sampled
communities. Hence, we recommend the use of Shannon and Simpson diversity
rather than species richness in efforts to quantify and compare microbial
diversity.Comment: To be published in The ISME Journal. Main text: 16 pages, 5 figures.
Supplement: 16 pages, 4 figure
Earthworm and belowground competition effects on plant productivity in a plant diversity gradient
Diversity is one major factor driving plant productivity in temperate grasslands. Although decomposers like earthworms are known to affect plant productivity, interacting effects of plant diversity and earthworms on plant productivity have been neglected in field studies. We investigated in the field the effects of earthworms on plant productivity, their interaction with plant species and functional group richness, and their effects on belowground plant competition. In the framework of the Jena Experiment we determined plant community productivity (in 2004 and 2007) and performance of two phytometer plant species [Centaurea jacea (herb) and Lolium perenne (grass); in 2007 and 2008] in a plant species (from one to 16) and functional group richness gradient (from one to four). We sampled earthworm subplots and subplots with decreased earthworm density and reduced aboveground competition of phytometer plants by removing the shoot biomass of the resident plant community. Earthworms increased total plant community productivity (+11%), legume shoot biomass (+35%) and shoot biomass of the phytometer C. jacea (+21%). Further, phytometer performance decreased, i.e. belowground competition increased, with increasing plant species and functional group richness. Although single plant functional groups benefited from higher earthworm numbers, the effects did not vary with plant species and functional group richness. The present study indicates that earthworms indeed affect the productivity of semi-natural grasslands irrespective of the diversity of the plant community. Belowground competition increased with increasing plant species diversity. However, belowground competition was modified by earthworms as reflected by increased productivity of the phytometer C. jacea. Moreover, particularly legumes benefited from earthworm presence. Considering also previous studies, we suggest that earthworms and legumes form a loose mutualistic relationship affecting essential ecosystem functions in temperate grasslands, in particular decomposition and plant productivity. Further, earthworms likely alter competitive interactions among plants and the structure of plant communities by beneficially affecting certain plant functional groups
- …