27 research outputs found

    Need for recovery amongst emergency physicians in the UK and Ireland: A cross-sectional survey

    Get PDF
    OBJECTIVES: To determine the need for recovery (NFR) among emergency physicians and to identify demographic and occupational characteristics associated with higher NFR scores. DESIGN: Cross-sectional electronic survey. SETTING: Emergency departments (EDs) (n=112) in the UK and Ireland. PARTICIPANTS: Emergency physicians, defined as any registered physician working principally within the ED, responding between June and July 2019. MAIN OUTCOME MEASURE: NFR Scale, an 11-item self-administered questionnaire that assesses how work demands affect intershift recovery. RESULTS: The median NFR Score for all 4247 eligible, consented participants with a valid NFR Score was 70.0 (95% CI: 65.5 to 74.5), with an IQR of 45.5-90.0. A linear regression model indicated statistically significant associations between gender, health conditions, type of ED, clinical grade, access to annual and study leave, and time spent working out-of-hours. Groups including male physicians, consultants, general practitioners (GPs) within the ED, those working in paediatric EDs and those with no long-term health condition or disability had a lower NFR Score. After adjusting for these characteristics, the NFR Score increased by 3.7 (95% CI: 0.3 to 7.1) and 6.43 (95% CI: 2.0 to 10.8) for those with difficulty accessing annual and study leave, respectively. Increased percentage of out-of-hours work increased NFR Score almost linearly: 26%-50% out-of-hours work=5.7 (95% CI: 3.1 to 8.4); 51%-75% out-of-hours work=10.3 (95% CI: 7.6 to 13.0); 76%-100% out-of-hours work=14.5 (95% CI: 11.0 to 17.9). CONCLUSION: Higher NFR scores were observed among emergency physicians than reported in any other profession or population to date. While out-of-hours working is unavoidable, the linear relationship observed suggests that any reduction may result in NFR improvement. Evidence-based strategies to improve well-being such as proportional out-of-hours working and improved access to annual and study leave should be carefully considered and implemented where feasible

    Electron transport parameters in CO2: scanning drift tube measurements and kinetic computations

    Get PDF
    This work presents transport coefficients of electrons (bulk drift velocity, longitudinal diffusion coefficient, and effective ionization frequency) in CO2 measured under time-of-flight conditions over a wide range of the reduced electric field, 15Td <= E/N <= 2660Td in a scanning drift tube apparatus. The data obtained in the experiments are also applied to determine the effective steady-state Townsend ionization coefficient. These parameters are compared to the results of previous experimental studies, as well as to results of various kinetic computations: solutions of the electron Boltzmann equation under different approximations (multiterm and density gradient expansions) and Monte Carlo simulations. The experimental data extend the range of E/N compared with previous measurements and are consistent with most of the transport parameters obtained in these earlier studies. The computational results point out the range of applicability of the respective approaches to determine the different measured transport properties of electrons in CO2. They demonstrate as well the need for further improvement of the electron collision cross section data for CO2 taking into account the present experimental data

    Effect of small admixtures of N

    No full text
    The electron drift velocity in argon with admixtures of up to 2% of nitrogen, hydrogen or oxygen is measured in a pulsed Townsend system for reduced electric fields ranging from 0.1 Td to 2.5 Td. The results are compared with those obtained by Monte Carlo simulations and from the solution of the electron Boltzmann equation using two different solution techniques: a multiterm method based on Legendre polynomial expansion of the angular dependence of the velocity distribution function and the Sn method applied to a density gradient expansion representation of the distribution function. An almost perfect agreement between the results of the three numerical methods and, in general, very good agreement between the experimental and the calculated results is obtained. Measurements in Ar-O2 mixtures were limited by electron attachment to oxygen molecules, which contributes to the measured drift velocity. As a result of this attachment contribution, the bulk drift velocity becomes larger than the flux drift velocity if attachment is more probable for electrons with energy below the mean value and smaller in the opposite case. Attachment also contributes to the negative differential conductivity observed in Ar-O2 mixtures

    Stability and excitation dynamics of an argon micro-scaled atmospheric pressure plasma jet

    Get PDF
    International audience© 2015 IOP Publishing Ltd.A megahertz-driven plasma jet at atmospheric pressure - the so-called micro-scaled atmospheric pressure plasma jet (μAPPJ) - operating in pure argon has been investigated experimentally and by numerical modelling. To ignite the discharge in argon within the jet geometry, a self-made plasma tuning unit was designed, which additionally enables measurements of the dissipated power in the plasma itself. Discharges in the α-mode up to their transition to the γ-mode were studied experimentally for varying frequencies. It was found that the voltage at the α-γ transition behaves inversely proportional to the applied frequency f and that the corresponding power scales with an f 3/2law. Both these findings agree well with the results of time-dependent, spatially one-dimensional fluid modelling of the discharge behaviour, where the f 3/2 scaling of the α-γ transition power is additionally verified by the established concept of a critical plasma density for sheath breakdown. Furthermore, phase resolved spectroscopy of the optical emission at 750.39 nm as well as at 810.37 nm and 811.53 nm was applied to analyse the excitation dynamics of the discharge at 27 MHz for different applied powers. The increase of the power leads to an additional maximum in the excitation structure of the 750.39 nm line emission at the α-γ transition point, whereas the emission structure around 811 nm does not change qualitatively. According to the fluid modelling results, this differing behaviour originates from the different population mechanisms of the corresponding energy levels of argon

    Cyclopropanation of Membrane Unsaturated Fatty Acids Is Not Essential to the Acid Stress Response of Lactococcus lactis subsp. cremoris ▿

    No full text
    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-l-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells
    corecore