33,006 research outputs found

    Self-consistent Keldysh approach to quenches in weakly interacting Bose-Hubbard model

    Full text link
    We present a non-equilibrium Green's functional approach to study the dynamics following a quench in weakly interacting Bose Hubbard model (BHM). The technique is based on the self-consistent solution of a set of equations which represents a particular case of the most general set of Hedin's equations for the interacting single-particle Green's function. We use the ladder approximation as a skeleton diagram for the two-particle scattering amplitude useful, through the self-energy in the Dyson equation, for finding the interacting single-particle Green's function. This scheme is then implemented numerically by a parallelized code. We exploit this approach to study the correlation propagation after a quench in the interaction parameter, for one (1D) and two (2D) dimensions. In particular, we show how our approach is able to recover the crossover from ballistic to diffusive regime by increasing the boson-boson interaction. Finally we also discuss the role of a thermal initial state on the dynamics both for 1D and 2D Bose Hubbard models, finding that surprisingly at high temperature a ballistic evolution is restored.Comment: 13 figure

    A microscopic study of the proton-neutron symmetry and phonon structure of the low-lying states in 92Zr

    Full text link
    We studied in a microscopic multiphonon approach the proton-neutron symmetry and phonon structure of some low-lying states recently discovered in 92Zr. We confirm the breaking of F-spin symmetry, but argue that the breaking mechanism is more complex than the one suggested in the original shell model analysis of the data. We found other new intriguing features of the spectrum, like a pronounced multiphonon fragmentation of the states and a tentative evidence of a three-phonon mixed symmetry state.Comment: 13 pages, to appear in Phys. Rev.

    Robust Small Sample Accurate Inference in Moment Condition Models

    Get PDF
    Procedures based on the Generalized Method of Moments (GMM) (Hansen, 1982) are basic tools in modern econometrics. In most cases, the theory available for making inference with these procedures is based on first order asymptotic theory. It is well-known that the (first order) asymptotic distribution does not provide accurate p-values and confidence intervals in moderate to small samples. Moreover, in the presence of small deviations from the assumed model, p-values and confidence intervals based on classical GMM procedures can be drastically affected (nonrobustness). Several alternative techniques have been proposed in the literature to improve the accuracy of GMM procedures. These alternatives address either the first order accuracy of the approximations (information and entropy econometrics (IEE)) or the nonrobustness (Robust GMM estimators and tests). In this paper, we propose a new alternative procedure which combines robustness properties and accuracy in small samples. Specifically, we combine IEE techniques as developed in Imbens, Spady, Johnson (1998) to obtain finite sample accuracy with robust methods obtained by bounding the original orthogonality function as proposed in Ronchetti and Trojani (2001). This leads to new robust estimators and tests in moment condition models with excellent finite sample accuracy. Finally, we illustrate the accuracy of the new statistic by means of some simulations for three models on overidentifying moment conditions.Exponential tilting, Generalized method of moments, Information and entropy econometrics, Monte Carlo, Robust tests, Saddlepoint techniques

    Exact spectral function of a Tonks-Girardeau gas in a lattice

    Full text link
    The single-particle spectral function of a strongly correlated system is an essential ingredient to describe its dynamics and transport properties. We develop a general method to calculate the exact spectral function of a strongly interacting one-dimensional Bose gas in the Tonks-Girardeau regime, valid for any type of confining potential, and apply it to bosons on a lattice to obtain the full spectral function, at all energy and momentum scales. We find that it displays three main singularity lines. The first two can be identified as the analogs of Lieb-I and Lieb-II modes of a uniform fluid; the third one, instead, is specifically due to the presence of the lattice. We show that the spectral function displays a power-law behaviour close to the Lieb-I and Lieb-II singularities, as predicted by the non-linear Luttinger liquid description, and obtain the exact exponents. In particular, the Lieb-II mode shows a divergence in the spectral function, differently from what happens in the dynamical structure factor, thus providing a route to probe it in experiments with ultracold atoms.Comment: 10 pages, 3 figure

    Leading large-x logarithms of the quark-gluon contributions to inclusive Higgs-boson and lepton-pair production

    Get PDF
    We present all-order expressions for the leading double-logarithmic threshold contributions to the quark-gluon coefficient functions for inclusive Higgs-boson production in the heavy top-quark limit and for Drell-Yan lepton-pair production. These results have been derived using the structure of the unfactorized cross sections in dimensional regularization and the large-x resummation of the gluon-quark and quark-gluon splitting functions. The resummed coefficient functions, which are identical up to colour factor replacements, are similar to their counterparts in deep-inelastic scattering but slightly more complicated.Comment: 8 pages, LaTeX, 1 figure (.eps). DESY address until 31 August 201
    • …
    corecore