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Abstract

Procedures based on the Generalized Method of Moments (GMM) (Hansen, 1982) are basic

tools in modern econometrics. In most cases, the theory available for making inference with

these procedures is based on first order asymptotic theory. It is well-known that the (first

order) asymptotic distribution does not provide accurate p-values and confidence intervals in

moderate to small samples. Moreover, in the presence of small deviations from the assumed

model, p-values and confidence intervals based on classical GMM procedures can be drastically

affected (nonrobustness). Several alternative techniques have been proposed in the literature to

improve the accuracy of GMM procedures. These alternatives address either the first order accu-

racy of the approximations (information and entropy econometrics (IEE)) or the nonrobustness

(Robust GMM estimators and tests). In this paper, we propose a new alternative procedure

which combines robustness properties and accuracy in small samples. Specifically, we combine

IEE techniques as developed in Imbens, Spady, Johnson (1998) to obtain finite sample accuracy

with robust methods obtained by bounding the original orthogonality function as proposed in

Ronchetti and Trojani (2001). This leads to new robust estimators and tests in moment condi-

tion models with excellent finite sample accuracy. Finally, we illustrate the accuracy of the new

statistic by means of some simulations for three models on overidentifying moment conditions.
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1 Introduction

Procedures based on the Generalized Method of Moments (GMM) (Hansen,

1982) are important tools in econometrics to estimate the parameters and make

inference in moment condition models. In general, the inferential tools (p-values

and confidence intervals) are based on first order asymptotic theory. More specifi-

cally, under appropriate regularity conditions, GMM estimators are asymptotically

normal and the standard classical statistics for hypothesis testing are asymptoti-

cally χ2− distributed. These results provide the tools used routinely in economet-

ric analysis. However, there is evidence in the econometric literature that these

asymptotic distributions do not provide accurate approximations to p-values and

confidence intervals when the sample size is moderate to small; see for instance

Altonji and Segal (1996), Burnside and Eichenbaum (1996), Hansen, Heaton, and

Yaron (1996) among others in the July 1996’s special issue of the Journal of Busi-

ness and Economic Statistics.

To alleviate this problem, several proposals have been put forward in the lit-

erature. An overview is presented in the July 1996’s special issue of Journal

of Business and Economic Statistics. For instance, Hansen, Heaton, and Yaron

(1996), opted for continuous updating estimators. Other authors such as Chris-

tiano and Haan (1996) found that imposing certain restrictions leads to substantial

improvements in the small-sample properties of the statistical tests. Andersen and

Sørenson (1996) stressed that it is generally not optimal to include many moments

in the estimation procedure if the sample size is moderate to small. Bootstrap

techniques have also been suggested to improve the approximation of the finite

sample distribution of GMM statistics. Hall and Horowitz (1996) gave conditions

under which the bootstrap provides asymptotic refinements to the critical values

of t-tests and to the tests for overidentifying moment restrictions.
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More recently, so-called information and entropy econometric (IEE) techniques

have been used to improve the finite sample accuracy of GMM estimators and tests;

see Imbens, Spady, and Johnson (1998) (ISJ thereafter) and for an overview, the

March 2002 special issue of the Journal of Econometrics. The basic idea is to

“tilt” the empirical distribution to the nearest distribution satisfying the moment

conditions, where the distance is measured by a power divergence statistic (Cressie

and Read, 1984) such as the Kullback-Leibler distance. These techniques are re-

lated to saddlepoint methods developed in the statistical literature for the fully

identified case (M-estimators); see for instance Field and Ronchetti (1990), Spady

(1991), Robinson, Ronchetti, and Young (2003).

In spite of their good finite sample accuracy when the model and the moment

conditions are exactly satisfied, p-values and confidence intervals based on IEE

techniques can be drastically affected as the original GMM procedures by small

deviations from the underlying distribution of the model and from the correspond-

ing moment conditions. Ronchetti and Trojani (2001) investigated this problem

for the classical GMM procedures and derived robust alternatives to GMM estima-

tors and tests. The goal of this paper is to extend these results to IEE techniques

in order to obtain new estimators and tests which combine both robustness prop-

erties and good accuracy in moderate to small samples.

The paper is organized as follows. In section 2, we review IEE techniques by fo-

cusing in particular on exponential tilting (ET) techniques and provide a link with

saddlepoint methods. Section 3 is devoted to the definition and the construction

of a robust version of the exponential tilting estimator and corresponding test. In

particular, we show that a necessary condition for the robustness of the ET esti-

mator and test is the boundedness of the orthogonality function and its derivative

with respect to the parameter. This implies a bounded influence function for the
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estimator and for the level of the corresponding test. When this condition is not

satisfied by the original orthogonality function, we apply the technique developed

in Ronchetti and Trojani (2001) to truncate the original orthogonality function

and we use this modified orthogonality function in the ISJ procedure. This leads

to new robust ET estimators and tests which are discussed in subsection 3.2. Sec-

tion 4 presents a Monte Carlo study for three benchmark models which shows the

excellent finite sample behavior of the new techniques both at the model and in

the presence of small deviations from the model. Finally, section 5 provides some

concluding remarks and suggestions for further research. The algorithm and the

computational aspects are discussed in the appendix.

2 Exponential tilting

Let (Zn)n∈N be a stationary ergodic sequence defined on an underlying proba-

bility space and taking values in R
N and let P={Pθ, θ ∈ Θ ⊂ R

k} be a family of

distributions in R
N corresponding to the model distribution (or reference model).

Further, let us define a function h : R
Nx Θ → R

H that enforces a set of orthogo-

nality conditions

E[h(Z; θ0)] = 0 (1)

on the structure of the underlying model. We assume that θ0 is the unique solution

of (1) and we consider the case where the number of conditions H is larger than

the number of parameters k.

The GMM estimator θ̂gmm of θ0 (Hansen, 1982) is defined by

θ̂gmm = arg min
θ

QW (θ) (2)

where QW (θ) =
(

1
N

∑N

i=1 h(Zi; θ)
)′

W−1
(

1
N

∑N

i=1 h(Zi; θ)
)

for some positive semi-

definite matrix W . Moreover, under (1) N · QW (θ̂gmm) is asymptotically χ2
H−k
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distributed and can be used to test overidentifying conditions (Hansen’s test).

To improve the finite sample properties of the GMM estimator and Hansen’s

test, ISJ proposed a class of alternative estimators based on the following idea.

Given two discrete distributions π̃ and π with common support and for a fixed

scalar parameter λ, define the power-divergence statistic by (Cressie and Read,

1984)

Iλ(π̃; π) =
1

λ · (1 + λ)

N
∑

i=1

π̃i

[( π̃i

πi

)λ

− 1
]

. (3)

The estimator θ̂ of θ, for a given λ, is then defined by the closest distribution to

the empirical distribution, as measured by the Cressie-Read statistic, within the

set of distributions admitting a solution to the moment equations, i.e. θ̂ is the

solution of the problem

min
π, θ

Iλ(π̃; π), subject to
N

∑

i=1

h(Zi; θ) · πi = 0 and
N

∑

i=1

πi = 1, (4)

where π̃ is the vector of empirical frequencies π̃i = 1
N

for i = 1, ..., N .

Different values of λ lead to different estimators as discussed in ISJ. We focus

on an important special case of this family of estimators, namely when λ −→ −1.

In this case, the optimization in (4) leads to the exponential tilted (ET) estimator

θ̂et which is defined as the minimizer of the Kullback-Leibler information criterion:

min
π, θ

N
∑

i=1

πi · log(πi) subject to
N

∑

i=1

h(Zi; θ) · πi = 0 and
N

∑

i=1

πi = 1. (5)

It turns out that πi is given by

πi =
et′h(Zi;θ)

∑N

j=1 et′h(Zj ;θ)
, (6)

and by defining the empirical cumulant generating function of h(Zi; θ),

K(t; θ) = log
( 1

N

N
∑

i=1

et′h(Zi;θ)
)

, (7)
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we obtain

−K(t, θ) =
N

∑

i=1

πilog(πi) + log(N). (8)

Therefore (5) can be rewritten more compactly as

max
t, θ

K(t; θ) subject to
∂

∂t
K(t; θ) = 0 , (9)

where πi is defined by (6).

Under regularity conditions, the tilted estimator θ̂et is asymptotically (first or-

der) equivalent to the GMM estimator, i.e.
√

N(θ̂et − θ0) has the same asymptotic

normal distribution as
√

N(θ̂gmm − θ0).

The corresponding test for overidentifying moment restrictions is based on the

test statistic −2 · N · K(t; θ̂et) (= 2 · N · KLIC(π̂et; π̃) in ISJ, p. 342). Under

the null hypothesis, this test statistic has the same asymptotic distribution as the

classical Hansen test statistic, i.e. χ2
d, where d = H − k.

ISJ provide convincing evidence that θ̂et and the corresponding test have better

finite sample properties than θ̂gmm and Hansen’s test. Furthermore, by (6), (7)

and (9),

∂

∂t
K(t; θ) = e−K(t;θ) · 1

N

N
∑

i=1

h(Zi; θ)e
t′h(Zi;θ)

=
N

∑

i=1

h(Zi; θ)πi(θ) = Eπ

[

h(Z; θ)
]

= 0 ,

i.e. the empirical distribution ( 1
N

, ..., 1
N

) is tilted to (π1, ..., πN ) in order to

satisfy the orthogonality conditions under (π1, ..., πN). This is the key procedure

to obtain saddlepoint approximations of the distribution of estimators and test

statistics which are well known to be highly accurate; cf. for instance Daniels

(1954), Field and Ronchetti (1990), and Spady (1991) for the fully identified case
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(M-estimtors). Indeed the empirical version used here corresponds to the so-called

empirical saddlepoint approximation; see Ronchetti and Welsh (1994) and for a

connection with empirical likelihood, Monti and Ronchetti (1993).

3 Robust Exponential Tilting

The tilted estimator θ̂et is an attractive alternative to the GMM estimator θ̂gmm

when the moment conditions (1) are exactly specified. In this section, we want to

investigate the behavior of the tilted estimator and the corresponding tests in the

presence of slight misspecifications of the moment conditions.

Let us first review these aspects for θ̂gmm.

3.1 Robust alternatives to the GMM

The lack of robustness of the GMM estimator and tests in the presence of small

deviations from the underlying distribution has already been studied extensively;

see Ronchetti and Trojani (2001) and references therein. In particular, in that pa-

per, it is shown that the influence function of the GMM estimator is proportional

to the orthogonality function h. When h(z; θ) is unbounded in z, this leads to non

robust estimators. An alternative robust version was proposed as follows.

Consider the Huber function

Hc : R
H → R

H , y 7→ y · wc(y) =



















y if ‖ y ‖≤ c

c · y

‖y‖
if ‖ y ‖> c ,

(10)

where wc(y) = min(1, c
||y||

) for y 6= 0 and wc(0) = 1, and a new mapping

hA,τ
c : R

N × Θ → R
H defined by

hA,τ
c (z ; θ) = Hc

(

A(θ)[h(z ; θ) − τ(θ)]
)

, (11)
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where the nonsingular matrix A ∈ R
H×H and the vector τ ∈ R

H are determined

through the implicit equations :



















Eθ

[

hA,τ
c (Z ; θ)

]

= 0

1
N

∑N

i=1

[

hA,τ
c (Zi ; θ)

]

·
[

hA,τ
c (Zi ; θ)

]′
= I .

(12)

Then, the GMM estimator θ̂gmm
c and the corresponding tests defined by the

modified bounded orthogonality conditions hA,τ
c have an influence function bounded

by c (≥
√

H) and are robust in the sense of Hampel, Ronchetti, Rousseeuw, and

Stahel (1986). An iterative algorithm for the computation of θ̂gmm
c is provided by

Ronchetti and Trojani (2001, p. 47); see also Appendix A.

3.2 Robust exponential tilting estimator and test

In view of section 2 and subsection 3.1, it seems natural at this point to try

and derive an estimator (and the corresponding tests) with the good finite sample

properties of θ̂et and the robustness properties of θ̂gmm
c . This can be achieved by

solving (9), with h(z ; θ) = hA,τ
c (z ; θ).

More specifically, by writing Kc(t ; θ) = log[ 1
N

∑N

i=1 et′hc(Zi ;θ)] and hc(. ; .) instead

of hA,τ
c (. ; .) for simplicity, the new robust tilting estimator θ̂et

c is defined by the

optimization problem :

max
t, θ

Kc(t ; θ), (13)

subject to














































∑N

i=1 hc(Zi ; θ)e
t′hc(Zi ; θ) = 0 (13.a)

Eθ

[

hc(Z ; θ)
]

= 0 (13.b)

1
N

∑N

i=1 hc(Zi ; θ)h
′
c(Zi ; θ) = I . (13.c)
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θ̂et
c is asymptotically equivalent to θ̂gmm

c , the robust GMM estimator defined by

hc(. ; .). Moreover, when c −→ ∞, we recover the classical estimator θ̂et. Notice

that even in the case where the cumulant generating function of h(Z ; θ) does not

exist and θ̂et is not defined, θ̂et
c with a finite c exists and is an alternative to the

classical estimator; see subsections 4.2 and 4.3. Finally, the corresponding robust

test for overidentifying restrictions is defined by the test statistic −2·N ·Kc(tc ; θ̂et
c )

which is asymptotically χ2
d under the null hypothesis, where d = H − k.

Let us now investigate in more details the robustness properties of θ̂et
c . The

tilting estimator can be viewed as an M-estimator (ISJ, p. 337) with estimating

equations
∑N

i=1 ρet(Zi ; θ̂
et, t̂et) = 0, where

ρet(z ; θ, t) =





t′ ∂h
∂θ′

(z ; θ) · exp(t′h(z ; θ))

h(z ; θ) · exp(t′h(z ; θ))



 . (14)

The influence function of estimators defined by estimating equations (M-estimators)

is proportional to the estimating function (Huber, 1981), i.e.

IF (z ; θ̂et, Pθ) = E
[

− ∂ρet

∂(θ′, t′)
(z ; θ̂et, t)

]−1

ρet(z ; θ̂et, t). (15)

The boundedness of the influence function implies a bounded bias of the estimator

and of the level of the corresponding test when the underlying distribution lies in

a neighborhood of the model (see Heritier and Ronchetti, 1994 and Ronchetti and

Trojani, 2001). Here, the IF for ET estimators is bounded if and only if ρet is

bounded with respect to z. Therefore, we can focus our analysis on the function

ρet to determine the robustness properties of the corresponding estimators and

tests.
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Generally, in the classical version, ρet is not bounded. In fact, both h(. ; .) and

∂h
∂θ

are not necessarily bounded. So the resulting estimators are not guaranteed to

be robust. For θ̂et
c , hc(. ; .) is bounded by construction, and therefore this estimator

is robust if ∂hc

∂θ
is bounded.

Consider the robust ET estimator defined by the orthogonality function (11).

It follows, with y = A(θ)[h(z ; θ) − τ(θ)] ,

∂

∂θ
hc(z ; θ) =

∂

∂θ
Hc(y) =



















A′A−1y + A[ ∂
∂θ

h(z ; θ) − τ ′] if ‖ y ‖≤ c

c{I − y

‖y‖
· yT

‖y‖
} · {A′A−1 y

‖y‖
+ A 1

‖y‖
[ ∂
∂θ

h(z ; θ) − τ ′]} if ‖ y ‖> c .

(16)

Thus ∂
∂θ

hc(z ; θ) is bounded with respect to z if and only if



















∂h
∂θ

is bounded when ‖ y ‖≤ c

1
‖y‖

∂h
∂θ

is bounded when ‖ y ‖> c.

(17)

The last two conditions are satisfied when ∂h
∂θ

is bounded everywhere. Then, for

a given model, when the derivative of the moment vector with respect to the pa-

rameters is bounded, the robustness properties of the estimator θ̂et
c follow. If this

is not the case, we have to check the boundedness of the conditions defined by

(17) to determine the robustness properties of the estimator and of the test for the

specific model.
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Figure 1: Schematic illustration of the robustness properties of the exponential

tilting estimator and test.
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4 Monte Carlo Investigation

To illustrate and compare the behavior of classical and robust ET estimators

and tests, we perform a Monte Carlo experiement for three benchmark models

(Chi-squared moments, Hall-Horowitz, stochastic lognormal volatility model). In

each case we work with data generated from the model and from various slight

perturbations of the model. We compute θ̂et and θ̂et
c and their corresponding tests

for overidentifying moment restrictions based on the test statistics −2·N ·K(t ; θ̂et)

and −2 ·N ·Kc(tc ; θ̂et
c ) respectively. Under the null hypothesis , these tests statis-

tics are asymptotically distributed as χ2
d, where d = H − k. We also report, where

they are available, the best results obtained by ISJ by means of other tilted test

statistics.
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In each experiment, we simulate 5000 samples and we report the actual sizes

P [T > vα] for each test based on a test statistic T corresponding to the nominal

sizes α = 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, where vα is the critical value of

the test, i.e. P [χ2
d > vα] = α. QQ-plots with respect to χ2

d quantiles and relative

errors (P [T > vα] − α)/α for each tests are also reported.

4.1 Model 1: Chi-squared Moments

The first Monte Carlo experiment focuses on a two moments, one parameter

problem defined by the moment vector:

h(Z ; θ) =







Z − θ

Z2 − θ2 − 2θ






.

The distribution of Z is χ2
1, θ0 = 1, and the data are generated from this model.

Here h(z ; θ) is unbounded in z and ∂h
∂θ

(z ; θ) = −
(

1

2(θ + 1)

)

is constant with re-

spect to z. Therefore, we can use hc(z ; θ) and we can expect good robustness and

finite sample accuracy from θ̂et
c and its corresponding tests.

The results of our simulations, for two sample sizes N = 500, 250, are presented

in Table 1. In the first case (N = 500), we can compare the results of our new

robust test to those obtained by the test statistics in ISJ. The first column shows

the actual size of the test based on the tilted estimator of the Lagrange multi-

pliers (ISJ.500), cf. ISJ p.343. The following two columns give the results for

the classical ET (classET.500) and for the robust ET (robET.500) respectively.

We notice that the nominal sizes of robET.500 are the closest to the actual size.

Notice that classET.500 test is very similar to the classical GMM specification

test and shows a very liberal behavior in terms of size. The ISJ.500 is between

the two ET statistics in terms of accuracy.
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For a better evaluation of the small sample properties of the robust ET sta-

tistics, we also tested a reduced sample size of 250. The results of the classical

and robust ET, classET.250 and robET.250, are reported in the last two columns

of Table 1. Even with such a small sample size, the robust ET outperforms the

classical test, and the corresponding nominal sizes are very close to the actual

sizes. These conclusions are confirmed by the graphical analysis in Figure 2.

Finally, we plot the relative errors, a more stringent measure than absolute

errors, for robET.500 in Figure 3 (a) and robET.250 in Figure 3 (b). Again, these

plots demonstrate the high accuracy of the robust ET test. In fact, the relative

error in the tail for the robust ET test for N = 250 is smaller than 4% down to

α = 0.02 and still reasonable for smaller sizes. The relative errors of the classical

statistics are not reported because they exceed 100% already for α = 0.05. These

results show that even in the case of no contamination, the robust ET test has a

very high finite sample accuracy and is an interesting alternative to classical GMM

and ET tests.
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Table 1: Comparison of actual and nominal size of the tests applied to Chi-Squared

Moments (Model 1) without contamination i.e. Z ∼ χ2
1, H = 2, k = 1 and 5000 replica-

tions. ISJ.N= best test statistics from ISJ; classET.N= classical ET test; robET.N=

robust test. .N indicates the sample size. The tuning constant for the robust test was

set to c = 2.

nom.size ISJ.500 classET.500 robET.500 classET.250 robET.250

0.200 0.237 0.2552 0.2108 0.2772 0.1996

0.100 0.125 0.1554 0.1048 0.1820 0.0986

0.050 0.068 0.1044 0.0488 0.1266 0.0486

0.025 0.038 0.0712 0.0246 0.0930 0.0260

0.010 0.019 0.0474 0.0100 0.0642 0.0078

0.005 0.010 0.0354 0.0048 0.0524 0.0040

0.001 0.003 0.0180 0.0004 0.0293 0.0006

Figure 2: QQ-plots of overidentifying ET statistics versus χ2
1.
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Figure 3: Relative errors for robET.500 (a) and robET.250 (b)
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Let us now investigate the behavior of the different procedures when the data

follow a slightly perturbed model distribution. To illustrate the effects, we assume

that Z does not follow the model distribution χ2
1 but two contaminated distribu-

tions

Z ∼ 0.95 · χ2
1 + 0.05 · χ2

10 (18)

and

Z ∼ Γ(
1

4
;
1

4
). (19)

In the first case, the Kolmogorv distance between the model and the contami-

nated distribution (i.e. the maximum difference between the distribution functions

of the two distributions) is less than 0.05. In the second case, the Kolmogorov dis-

tance is 0.19. This means that (18) can be viewed as a small perturbation of

the model distribution and (19) a slightly larger perturbation. Figure 4 shows the

probability distribution functions (pdf) and the QQ-plots of the distributions with

respect to the model (χ2
1). We do not argue that (18) or (19) should replace the

original model χ2
1. These are just illustrations of potential small deviations from

the model. We still assume the original model with its moment conditions but

we take into account the fact that in reality, the data might come from a slightly

different unknown distribution with slightly different moment conditions. Thus,

our goal is to have procedures based on the original model and moment conditions

which still behave reasonably well in the presence of unknown small deviations.

The results of Tables 2, 3 and Figures 5, 6 show that the classical ET test is

very inaccurate whereas the robust ET test is stable and very accurate even in the

presence of small deviations from the underlying model.
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Table 2: Comparison of actual and nominal size of the tests applied to Chi-Squared

Moments (Model 1) with contaminated data (18), H = 2, k = 1 and 5000 replications.

classET.N= classical ET test; robET.N= robust ET test. .N indicates the sample size.

The tuning constant for the robust test was set to c = 2.

nom.size classET.500 robET.500 classET.250 robET.250

0.200 0.2640 0.2028 0.2742 0.2074

0.100 0.1624 0.0952 0.1688 0.1118

0.050 0.1006 0.0466 0.1108 0.0530

0.025 0.0666 0.0240 0.0750 0.0270

0.010 0.0378 0.0084 0.0504 0.0110

0.005 0.0280 0.0042 0.0352 0.0060

0.001 0.0154 0.0006 0.0178 0.0006

Table 3: Comparison of actual and nominal size of the tests applied to Chi-Squared

Moments (Model 1) with contaminated data (19), H = 2, k = 1 and 5000 replications.

classET.N= classical ET test; robET.N= robust test. .N indicates the sample size.

The tuning constant for the robust test was set to c = 2.

nom.size classET.500 robET.500 classET.250 robET.250

0.200 0.2870 0.1940 0.2830 0.2178

0.100 0.1748 0.0960 0.1764 0.1168

0.050 0.1054 0.0462 0.1138 0.0576

0.025 0.0728 0.0240 0.0812 0.0310

0.010 0.0436 0.0078 0.0568 0.0132

0.005 0.0312 0.0044 0.0440 0.0076

0.001 0.0148 0.0008 0.0244 0.0022
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Figure 5: QQ-plots of overidentifying ET statistics versus χ2
1 with Z ∼ 0.95χ2

1 +

0.05χ2
10.
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Figure 6: QQ-plots of overidentifying ET statistics versus χ2
1 with Z ∼ Γ(1

4
; 1

4
).
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4.2 Model 2: Hall-Horowitz (1996)

In this experiment, we consider a design investigated by Hall and Horowitz

(1996), where the moment vector has the form:

h(Z ; θ) =







e−0.72−θ·(Z(1)+Z(2))+3·Z(2) − 1

Z(2) · [e−0.72−θ·(Z(1)+Z(2))+3·Z(2) − 1]






.

The vector (Z(1), Z(2))′ follows a bivariate normal distribution with means zero

(0, 0)′, variances 0.16 and correlation coefficient zero. The true value of θ is θ0 = 3.

We follow the same approach as in subsection 4.1. The simulation results are

reported in Table 4. In order to compare our analysis to the ISJ results, we sim-

ulate data with two different sample sizes, 200 and 100. The columns ISJ.N

represent the closest nominal size from the ISJ investigation with sample sizes of

200 and 100 respectively (cf. ISJ p.345). The columns robET.N report the simu-

lations result of the robust ET, where the constant c is fixed to 2.

Since, for this model, the cumulant generating function of the score vector does

not exist, the classical ET test cannot be defined. However, we can “simulate” this

case by means of our robust ET test with a large tuning constant c (for example

c = 80). We call this test a “classical” ET test (“classET”). Notice however, that

we do not recommend using this test, the accuracy of the robust ET test with

c = 2 being so much better.

Inspection of Table 4 reveals the high accuracy of the robust ET test and its

better performance compared to the best statistics from ISJ for the two sample

sizes. This results are confirmed by the QQ-plots in Figure 7 and the analysis of

the relative error in Figure 8 (a) and (b).

19



Table 4: Comparison of actual and nominal size of the tests applied to Hall-Horowitz’s

design (Model 2) without contamination i.e.





Z(1)

Z(2)



 ∼ N

(





0

0



 ,





.16 0

0 .16





)

,

H = 2, k = 1 and 5000 replications. ISJ.N= best test statistics for ISJ;

“classET”.N= “classical” ET test; robET.N= robust ET test. .N indicates the

sample size. The tuning constant for the robust test was set to c = 2.

nom.size ISJ.200 “classET”.200 robET.200 ISJ.100 “classET”.100 robET.100

0.200 0.228 0.2486 0.2020 0.250 0.2807 0.2092

0.100 0.125 0.1459 0.0972 0.128 0.1776 0.1022

0.050 0.065 0.0923 0.0468 0.070 0.1175 0.0524

0.025 0.035 0.0582 0.0270 0.043 0.0800 0.0286

0.010 0.016 0.0338 0.0110 0.022 0.0509 0.0134

0.005 0.008 0.0231 0.0042 0.013 0.0376 0.0070

0.001 0.002 0.0012 0.0008 0.004 0.0194 0.0010

Figure 7: QQ-plots of overidentifying ET statistics versus χ2
1.
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Figure 8: Relative errors for robET.200 (a) and robET.100 (b)
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(b)

Similarly to Model 1, we studied the robustness of our new statistics for Hall-

Horowitz’s model when the data are contaminated according to the following dis-

tribution





Z(1)

Z(2)



 ∼ 0.95 · N
(





0

0



 ,





.16 0

0 .16





)

+ 0.05 · N
(





0

0



 ,





2 0

0 2





)

In spite of this perturbation, the results for the robust ET statistics are only

slightly modified compared to results from non-contaminated data. In contrast,

the results for the “classical” ET tests are markedly worse cf. Table 5 and Figure 9.
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Table 5: Comparison of actual and nominal size of the tests applied to Hall-Horowitz’s

design (Model 2) with contaminated data. H = 2, k = 1 and 5000 replications.

“classET”.N= “classical” ET test; robET.N= robust ET test. .N indicates the sample

size. The tuning constant for the robust test was set to c = 2.

nom.size “classET”.200 robET.200 “classET”.100 robET.100

0.200 0.2692 0.2160 0.3010 0.1988

0.100 0.1620 0.1010 0.1908 0.1072

0.050 0.1022 0.0564 0.1236 0.0554

0.025 0.0678 0.0314 0.0902 0.0320

0.010 0.0412 0.0130 0.0630 0.0136

0.005 0.0300 0.0078 0.0506 0.0080

0.001 0.0122 0.0024 0.0298 0.0014

Figure 9: QQ-plots of overidentifying ET statistics versus χ2
1 with perturbed data.
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4.3 Model 3: Stochastic Lognormal Volatility Model

The stochastic lognormal volatility (SLV) model offers a powerful alternative

to GARCH-type models to explain the well-documented time varying volatility.

Moreover, the SLV model provides a reasonable first approximation to model the

properties of most financial return series.

During the last ten years, a number of Monte Carlo studies have explored the

small sample properties of these estimators. Since, the maximum likelihood ap-

proach is difficult to implement, this has left the field open to competition among

alternative procedures such as GMM (Melino and Turnbull, 1990), maximum like-

lihood Monte Carlo (Sandmann and Koopman, 1996), quasi-maximum likelihood,

Bayesian Markov Chain Monte Carlo (Jacquier, Polson, and Rossi, 1994), max-

imum likelihood through numerical integration (Fridman and Harris, 1998) and

efficient method of moments (EMM) (Gallant and Tauchen, 1996). Andersen,

Chung, and Sørenson (1999) have investigated the finite sample comparison of

various methods for estimating SLV. Out of the six alternative methods men-

tioned above, they found that EMM completely overshadows the others with its

flexibility and efficiency.

Consider the simple version of SLV model defined by:



















yt = σtZt

ln σ2
t = w + β ln σ2

t−1 + σuut

where t = 1, ..., N , θ = (w, β, σu) is the parameter vector, and (Zt, ut) are iid

N(0, I2), that is, the error terms are mutually independent and distributed accord-

ing to a standard normal distribution. In the model, returns display zero serial

correlation but the dependence in the higher-order moments is induced through
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the stochastic volatility term, σt, the logarithm of which follows a first order au-

toregressive [AR(1)] model. The volatility persistence parameter, β, is estimated

to be less than unity, but quite close to it in most empirical studies. Finally, the

assumption of lognormality of the volatility process is a convenient parameteriza-

tion that allows for closed-form solutions of the moments and is consistent with the

evidence of excess kurtosis or “fat tails” in the unconditional return distribution.

When we impose the inequality constraints 0 < β < 1 and σu ≥ 0 to the model,

the return innovation series yt becomes strictly stationary and ergodic, and uncon-

ditional moments of any order exist. Throughout, we work with parameter values

that satisfy these additional inequalities. To implement the robust ET procedure,

we use 5 orthogonality conditions used by Andersen and Sørenson (1996). The

moment vector is defined by

h(y, θ) =

































|yt| −
√

2
π

exp (µ

2
+ σ2

8
)

y2
t − exp (µ + σ2

2
)

|ytyt−1| − 2
π

exp (µ + σ2

4
) exp (β σ2

4
)

|ytyt−3| − 2
π

exp (µ + σ2

4
) exp (β3 σ2

4
)

|ytyt−5| − 2
π

exp (µ + σ2

4
) exp (β5 σ2

4
)]

































,

where µ = w
1−β

σ2 = σ2
u

1−β2 and θ = (w, β, σu).

We simulate 5000 samples of 500 observations from the SLV model. The vector of

parameters fixed for the simulation of the data vector Z is θ0 = (−.368, .95, .260).

These values correspond to those used in the empirical study of the SLV by Jacquier

et al. (1994) and Andersen et al. (1999), among others.
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The samples of size 500 are small by the standards of high-frequency financial

time series analysis so the results presented here show the small sample properties

of the ET method. Table 6 show in this case the good accuracy of the robust ET

method for the overidentifying moments test. The nominal size of the robust ET

method is close to the actual size even in the extreme tail. The QQ-plot in Figure

10 (a) confirms these results. Even when the data is contaminated (according to

the configuration given in Table 7), the accuracy of the robust ET test is good.

Figure 10 (b) confirms these results.

Finally, we estimate the SLV model (without contamination) by EMM and

compare the results obtained with our new robust ET estimator. We choose EMM

because of its flexibility and efficiency. The EMM computations are based on the

procedure outlined in Gallant and Tauchen (2001), implemented in Finmetrics,

with the optimal auxiliary model chosen automatically. Table 8 shows the bias,

the variance and the associated root mean squared errors (RMSE) for each para-

meter and for both EMM and robust ET method. With respect to bias, variance,

and RMSE, the robust ET method dominates EMM for all parameters except for

σu, where the bias of EMM is smaller than that of the robust ET method. In

particular, the reduction in RMSE is substantial.
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Table 6: Comparison of actual and nominal size of the robust ET statistic applied to

SLV’s design (Model 3) without contamination i.e.





Zt

ut



 ∼ N

(





0

0



 ,





1 0

0 1





)

H = 5, k = 3 and 5000 replications. robET.N= robust ET test. .N indicates the

sample size. The tuning constant was set to c = 2.5

nom.size robET.500

0.200 0.2276

0.100 0.1186

0.050 0.0634

0.025 0.0318

0.010 0.0100

0.005 0.0050

0.001 0.0012

Figure 10: QQ-plots of overidentifying ET statistics versus χ2
2 with normal (a) and

contaminated data (b).
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Table 7: Comparison of actual and nominal size of the robust ET statistic applied to

SLV’s design (Model 3) with contaminated data i.e.





Zt

ut



 ∼ 0.95 · N
(





0

0



 ,





1 0

0 1





)

+ 0.05 · N
(





0

0



 ,





9 0

0 9





)

H = 5, k = 3 and 5000 replications. robET.N= robust ET test. .N indicates the

sample size. The tuning constant was set to c = 2.5

nom.size robET.500

0.200 0.2330

0.100 0.1186

0.050 0.0604

0.025 0.0300

0.010 0.0114

0.005 0.0068

0.001 0.0016
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Table 8: Comparison of RMSEs of EMM and ET method with 5000 replications; true

parameters (w, β, σu) = (−.368, .95, .260).

Method w β σu

bias var RMSE bias var RMSE bias var RMSE

EMM -.1640 .3367 .6030 -.0150 .0063 .0810 .0150 .0398 .2002

robust ET .1020 .0380 .2220 .0144 .0006 .0299 -.0346 .0118 .1142

5 Conclusion

The Robust ET method is a useful procedure which provides attractive alterna-

tive estimators and tests to standard GMM methods. Our analysis shows that the

new test statistic for overidentifying restrictions has excellent small sample prop-

erties for inference. Moreover, by its robustness, the procedure provides reliable

estimators and tests even when the model does not hold exactly. Furthermore, the

robust ET method is as flexible as GMM because it requires only a modified mo-

ments vector. Future research directions include the application of this method to

other more complex models and the development of more efficient computational

procedures.

28



A APPENDIX

Here we provide the algorithm and the computational aspects for solving (13) un-

der the constraints (13.a), (13.b) and (13.c). For the particular models studied in

this paper, Matlab’s code is available from the authors upon request.

A.1 The Algorithm

To develop the algorithm for a general robust ET, we extend the procedure

presented in Ronchetti and Trojani (2001, p. 47).

Specifically, for a given bound c >
√

H, the computation of the robust ET

estimator can be performed by the following four steps:

i. Fix a starting value θ0 for θ and initial values τ0 = 0 and A0 such that

A′
0A0 =

[ 1

N

N
∑

i=1

h(Zi ; θ0)h(Zi ; θ0)
′
]−1

ii. Compute new values τ1 and A1 for τ and A defined by

τ1 =
Eθ0 [h(Z ; θ0)wc(A0(h(Z ; θ0) − τ0))]

Eθ0wc(A0(h(Z ; θ0) − τ0))
(20)

and

(A′
1A1)

−1 =
1

N

N
∑

i=1

[(h(Zi ; θ0)− τ0))(h(Zi ; θ0)− τ0)
′×w2

c (A0(h(Zi; θ0)− τ0))].

(21)

iii. Compute the optimal ET estimator θ1 associated to the orthogonality func-

tion hA1,τ1
c by solving (13) subject to (13.a).

iv. Replace τ0 and A0 by τ1 and A1, respectively, and iterate the second and the

third step described above until convergence.
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A.2 Computational aspects

We used the fmincon() procedure for optimization in MATLAB 6.5. This

algorithm is based on a Sequential Quadratic Programming (SQP) method, in

which a Quadratic Programming (QP) subproblem is solved at each iteration. An

estimate of the Hessian of the Lagrangian is updated at each iteration using the

BFGS formula.

A particular point in this algorithm is the calculation of the vector τ defined

by (20). The expectation in (20) is easily computed by simulating a sample of size

75000.
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