1,983 research outputs found

    Role of Quantum Confinement in Luminescence Efficiency of Group IV Nanostructures

    Full text link
    Experimental results obtained previously for the photoluminescence efficiency (PLeff_{eff}) of Ge quantum dots (QDs) are theoretically studied. A log\log-log\log plot of PLeff_{eff} versus QD diameter (DD) resulted in an identical slope for each Ge QD sample only when EG(D2+D)1E_{G}\sim (D^2+D)^{-1}. We identified that above DD\approx 6.2 nm: EGD1E_{G}\sim D^{-1} due to a changing effective mass (EM), while below DD\approx 4.6 nm: EGD2E_{G}\sim D^{-2} due to electron/ hole confinement. We propose that as the QD size is initially reduced, the EM is reduced, which increases the Bohr radius and interface scattering until eventually pure quantum confinement effects dominate at small DD

    Zurek-Kibble Mechanism for the Spontaneous Vortex Formation in NbAl/Alox/NbNb-Al/Al_{ox}/Nb Josephson Tunnel Junctions: New Theory and Experiment

    Get PDF
    New scaling behavior has been both predicted and observed in the spontaneous production of fluxons in quenched NbAl/Alox/NbNb-Al/Al_{ox}/Nb annular Josephson tunnel junctions as a function of the quench time, τQ\tau_{Q}. The probability f1f_{1} to trap a single defect during the N-S phase transition clearly follows an allometric dependence on τQ\tau_{Q} with a scaling exponent σ=0.5\sigma = 0.5, as predicted from the Zurek-Kibble mechanism for {\it realistic} JTJs formed by strongly coupled superconductors. This definitive experiment replaces one reported by us earlier, in which an idealised model was used that predicted σ=0.25\sigma = 0.25, commensurate with the then much poorer data. Our experiment remains the only condensed matter experiment to date to have measured a scaling exponent with any reliability.Comment: Four pages, one figur

    New Experiments for Spontaneous Vortex Formation in Josephson Tunnel Junctions

    Get PDF
    It has been argued by Zurek and Kibble that the likelihood of producing defects in a continuous phase transition depends in a characteristic way on the quench rate. In this paper we discuss an improved experiment for measuring the Zurek-Kibble scaling exponent σ\sigma for the production of fluxons in annular symmetric Josephson Tunnel Junctions. We find σ0.5\sigma \simeq 0.5. Further, we report accurate measurements of the junction gap voltage temperature dependence which allow for precise monitoring of the fast temperature variations during the quench.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    Molecular Clouds associated with the Type Ia SNR N103B in the Large Magellanic Cloud

    Full text link
    N103B is a Type Ia supernova remnant (SNR) in the Large Magellanic Cloud (LMC). We carried out new 12^{12}CO(JJ = 3-2) and 12^{12}CO(JJ = 1-0) observations using ASTE and ALMA. We have confirmed the existence of a giant molecular cloud (GMC) at VLSRV_\mathrm{LSR} \sim245 km s1^{-1} towards the southeast of the SNR using ASTE 12^{12}CO(JJ = 3-2) data at an angular resolution of \sim25"" (\sim6 pc in the LMC). Using the ALMA 12^{12}CO(JJ = 1-0) data, we have spatially resolved CO clouds along the southeastern edge of the SNR with an angular resolution of \sim1.8"" (\sim0.4 pc in the LMC). The molecular clouds show an expanding gas motion in the position-velocity diagram with an expansion velocity of 5\sim5 km s1^{-1}. The spatial extent of the expanding shell is roughly similar to that of the SNR. We also find tiny molecular clumps in the directions of optical nebula knots. We present a possible scenario that N103B exploded in the wind-bubble formed by the accretion winds from the progenitor system, and is now interacting with the dense gas wall. This is consistent with a single-degenerate scenario.Comment: 12 pages, 1 table, 8 figures, accepted for publication in The Astrophysical Journal (ApJ

    Quantum Algebras Associated With Bell States

    Full text link
    The antisymmetric solution of the braided Yang--Baxter equation called the Bell matrix becomes interesting in quantum information theory because it can generate all Bell states from product states. In this paper, we study the quantum algebra through the FRT construction of the Bell matrix. In its four dimensional representations via the coproduct of its two dimensional representations, we find algebraic structures including a composition series and a direct sum of its two dimensional representations to characterize this quantum algebra. We also present the quantum algebra using the FRT construction of Yang--Baxterization of the Bell matrix.Comment: v1: 15 pages, 2 figures, latex; v2: 18 pages, 2 figures, latex, references and notes adde

    The Age of the Galactic Stellar Halo from Gaia White Dwarfs

    Get PDF
    We use 156 044 white dwarf candidates with 5σ\geq5\sigma significant parallax measurements from the Gaia mission to measure the velocity dispersion of the Galactic disc; (σU,σV,σW)=(30.8,23.9,20.0)(\sigma_U,\sigma_V,\sigma_W) = (30.8, 23.9, 20.0) km s1^{-1}. We identify 142 objects that are inconsistent with disc membership at the >5σ>5\sigma level. This is the largest sample of field halo white dwarfs identified to date. We perform a detailed model atmosphere analysis using optical and near-infrared photometry and parallaxes to constrain the mass and cooling age of each white dwarf. The white dwarf cooling ages of our targets range from 7 Myr for J1657+2056 to 10.3 Gyr for J1049-7400. The latter provides a firm lower limit of 10.3 Gyr for the age of the inner halo based on the well-understood physics of white dwarfs. Including the pre-white dwarf evolutionary lifetimes, and limiting our sample to the recently formed white dwarfs with cooling ages of <500<500 Myr, we estimate an age of 10.9±0.410.9 \pm 0.4 Gyr (internal errors only) for the Galactic inner halo. The coolest white dwarfs in our sample also give similar results. For example, J1049-7400 has a total age of 10.9-11.1 Gyr. Our age measurements are consistent with other measurements of the age of the inner halo, including the white dwarf based measurements of the globular clusters M4, NGC 6397, and 47 Tuc.Comment: MNRAS, in pres

    Murchison Widefield Array and XMM-Newton observations of the Galactic supernova remnant G5.9+3.1

    Get PDF
    In this paper we discuss the radio continuum and X-ray properties of the so-far poorly studied Galactic supernova remnant (SNR) G5.9+3.1. We present the radio spectral energy distribution (SED) of the Galactic SNR G5.9+3.1 obtained with the Murchison Widefield Array (MWA). Combining these new observations with the surveys at other radio continuum frequencies, we discuss the integrated radio continuum spectrum of this particular remnant. We have also analyzed an archival XMM-Newton observation, which represents the first detection of X-ray emission from this remnant. The SNR SED is very well explained by a simple power-law relation. The synchrotron radio spectral index of G5.9+3.1, is estimated to be 0.42±\pm0.03 and the integrated flux density at 1GHz to be around 2.7Jy. Furthermore, we propose that the identified point radio source, located centrally inside the SNR shell, is most probably a compact remnant of the supernova explosion. The shell-like X-ray morphology of G5.9+3.1 as revealed by XMM-Newton broadly matches the spatial distribution of the radio emission, where the radio-bright eastern and western rims are also readily detected in the X-ray while the radio-weak northern and southern rims are weak or absent in the X-ray. Extracted MOS1+MOS2+PN spectra from the whole SNR as well as the north, east, and west rims of the SNR are fit successfully with an optically thin thermal plasma model in collisional ionization equilibrium with a column density N_H~0.80x102210^{22} cm2^{-2} and fitted temperatures spanning the range kT~0.14-0.23keV for all of the regions. The derived electron number densities n_e for the whole SNR and the rims are also roughly comparable (ranging from ~0.20f1/20.20f^{-1/2} cm3^{-3} to ~0.40f1/20.40f^{-1/2} cm3^{-3}, where f is the volume filling factor). We also estimate the swept-up mass of the X-ray emitting plasma associated with G5.9+3.1 to be ~46f1/2M46f^{-1/2}M_{\odot}.Comment: Accepted for publication in A&

    Quantum dots with even number of electrons: Kondo effect in a finite magnetic field

    Full text link
    We study a small spin-degenerate quantum dot with even number of electrons, weakly connected by point contacts to the metallic electrodes, and subject to an external magnetic field. If the Zeeman energy B is equal to the single-particle level spacing Δ\Delta in the dot, the ground state of the dot becomes doubly degenerate, and the system exhibits Kondo effect, despite the fact that B exceeds by far the Kondo temperature TKT_{K}. A possible realization of this in tunneling experiments is discussed

    The neutral dynamics during the 2009 sudden stratosphere warming simulated by different whole atmosphere models

    No full text
    The present study compares simulations of the 2009 sudden stratospheric warming (SSW) from four different whole atmosphere models. The models included in the comparison are the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy, Hamburg Model of the Neutral and Ionized Atmosphere, Whole Atmosphere Model, and Whole Atmosphere Community Climate Model Extended version (WACCM-X). The comparison focuses on the zonal mean, planetary wave, and tidal variability in the middle and upper atmosphere during the 2009 SSW. The model simulations are constrained in the lower atmosphere, and the simulated zonal mean and planetary wave variability is thus similar up to approximate to 1 hPa (50 km). With the exception of WACCM-X, which is constrained up to 0.002 hPa (92 km), the models are unconstrained at higher altitudes leading to considerable divergence among the model simulations in the mesosphere and thermosphere. We attribute the differences at higher altitudes to be primarily due to different gravity wave drag parameterizations. In the mesosphere and lower thermosphere, we find both similarities and differences among the model simulated migrating and nonmigrating tides. The migrating diurnal tide (DW1) is similar in all of the model simulations. The model simulations reveal similar temporal evolution of the amplitude and phase of the migrating semidiurnal tide (SW2); however, the absolute SW2 amplitudes are significantly different. Through comparison of the zonal mean, planetary wave, and tidal variability during the 2009 SSW, the results of the present study provide insight into aspects of the middle and upper atmosphere variability that are considered to be robust features, as well as aspects that should be considered with significant uncertainty

    Teleportation, Braid Group and Temperley--Lieb Algebra

    Full text link
    We explore algebraic and topological structures underlying the quantum teleportation phenomena by applying the braid group and Temperley--Lieb algebra. We realize the braid teleportation configuration, teleportation swapping and virtual braid representation in the standard description of the teleportation. We devise diagrammatic rules for quantum circuits involving maximally entangled states and apply them to three sorts of descriptions of the teleportation: the transfer operator, quantum measurements and characteristic equations, and further propose the Temperley--Lieb algebra under local unitary transformations to be a mathematical structure underlying the teleportation. We compare our diagrammatical approach with two known recipes to the quantum information flow: the teleportation topology and strongly compact closed category, in order to explain our diagrammatic rules to be a natural diagrammatic language for the teleportation.Comment: 33 pages, 19 figures, latex. The present article is a short version of the preprint, quant-ph/0601050, which includes details of calculation, more topics such as topological diagrammatical operations and entanglement swapping, and calls the Temperley--Lieb category for the collection of all the Temperley--Lieb algebra with physical operations like local unitary transformation
    corecore