41 research outputs found

    Study of the Qualitative Characteristics of Rapeseed Oil Obtained by Cold Pressing

    Get PDF
    Oil from spring rape seeds obtained by cold pressing was selected as the object of this study. Oil samples were obtained under the following technological conditions: the annular gap was 0.7 mm in a grain chamber and the screw rotation speed was 160 rpm at a pressing temperature of 315 K. The oil composition was studied by gas-liquid chromatography on the Chromotech 5000 apparatus. Rapeseed oil characteristics were obtained with chromatograms. An increased content of linoleic acid 20% (ω6) and linolenic acid 12% (ω3) was revealed in the fatty acid composition of the sample. Fatty acids contribute to lipid metabolism regulation. They are of primary importance in the diet. The presence of 58.6% oleic acid (ω9) was identified. The resulting rapeseed oil had healing properties due to the presence of ω3, ω6 and ω9. Vitamin B, vitamin K, traces of vitamin A, and α, β + γ, δ-tocopherols were found. α, β + γ-tocopherols contribute to the oxidation process. According to these results, rapeseed oil can be confidently recommended for introduction into various food recipes. Keywords: rapeseed oil, vitamins, fatty acid compositio

    Study of microflora change and preservation of vitamins b2 and e of grain in the process of steaming and flaking

    Get PDF
    The study of the process of moisture-thermal treatment of grain crops: wheat, oats, barley, corn, peas, bran and others was carried out in the work. The drying process examination was done on a drying plant located in the testing laboratory of JSC "Research and Production Center" All-Russian Research Institute of the Feed Industry ". Studies of the grain qualitative characteristics were carried out in the accredited testing laboratory of JSC "RPC" ARSRIFI", which allows carrying physical- and chemical analysis, mycotoxicology and microbiology of plant raw materials

    The possibility to decrease biological activity of chrysotile-asbestos

    Get PDF
    The paper presents a study of natural chrysotile and 15 samples modified using different temperature and pressure. The morphology, dimensions, chemical composition, crystalline structure, and technologic characteristics of the samples studied were similar. The numbers of negatively charged centers on the surface of fibers were about the same in all the samples. In two modified asbestos samples the number of positively charged centers was less than in the native one. In these samples the energy of interaction of charged centers with macromolecules of rodamin and eozin was also less than in the sample of natural chrysotile. It directly correlated with cytotoxicity and mutagenicity of them. The principal possibility to decrease the biological activity of asbestos has been discussed

    Термодинамико-топологический анализ бутанольно-толуольной смеси

    Get PDF
    The object of the research is a butanol-toluene mixture (BLS), which is a waste product of organosilicon enamels and consists of organic substances. In order to create a basic technological scheme of separation, thermodynamic-topological analysis was applied that takes into account the peculiarities of the rectification process in the poly-azeotrope mixture. The presence of 7 binary and 5 ternary azeotropes in the system was found. Singular points of the pentatope are considered. The distillation and rectification zones are determined. Flow graphs options separation were drawn, which can be the basis for the development of a technological scheme for the separation of the studied mixtures.В работе проведен термодинамико-топологический анализ бутанольно-толуольной смеси, образующейся в качестве отхода в лакокрасочной промышленности. Представлен анализ концентрационного образа изучаемой смеси - пентатопа, рассмотрены составляющие его симплексы меньшей размерности - тетраэдры. Синтезированы основные пути разделения бутанольно-толуольной смеси в виде потоковых графов

    Baby MIND: A magnetised spectrometer for the WAGASCI experiment

    Get PDF
    The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a magnetic spectrometer behind the main WAGASCI target to be able to measure the charge and momentum of the outgoing muon from neutrino charged current interactions.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). Title + 4 pages, LaTeX, 6 figure

    Baby MIND Experiment Construction Status

    Get PDF
    Baby MIND is a magnetized iron neutrino detector, with novel design features, and is planned to serve as a downstream magnetized muon spectrometer for the WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main goals of this experiment is to reduce systematic uncertainties relevant to CP-violation searches, by measuring the neutrino contamination in the anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at CERN, and is planned to be operational in Japan in October 2017.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). 4 pages, LaTeX, 7 figure

    Baby MIND: A magnetized segmented neutrino detector for the WAGASCI experiment

    Get PDF
    T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280~m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295~km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.Comment: In new version: modified both plots of Fig.1 and added one sentence in the introduction part explaining Baby MIND role in WAGASCI experiment, added information for the affiliation

    The Baby MIND spectrometer for the J-PARC T59(WAGASCI) experiment

    Get PDF
    The Baby MIND spectrometer is designed to measure the momentum and charge of muons from neutrino interactions in water and hydrocarbon targets at the J-PARC T59 (WAGASCI) experiment. The WAGASCI experiment will measure the ratio of neutrino charged current interaction cross-sections on water and hydrocarbon aiming at reducing systematic errors in neutrino oscillation analyses at T2K. Construction of the Baby MIND detector within the CERN Neutrino Platform framework was completed in June 2017, where it underwent full commissioning and characterization on a charged particle beam line at the Proton Synchrotron experimental hall

    The Baby MIND spectrometer for the J-PARC T59(WAGASCI) experiment

    Get PDF
    The Baby MIND spectrometer is designed to measure the momentum and charge of muons from neutrino interactions in water and hydrocarbon targets at the J-PARC T59 (WAGASCI) experiment. The WAGASCI experiment will measure the ratio of neutrino charged current interaction cross-sections on water and hydrocarbon aiming at reducing systematic errors in neutrino oscillation analyses at T2K. Construction of the Baby MIND detector within the CERN Neutrino Platform framework was completed in June 2017, where it underwent full commissioning and characterization on a charged particle beam line at the Proton Synchrotron experimental hall
    corecore