276 research outputs found

    The modification of the energy spectrum of charged particles by exotic open 4-smoothness via superstring theory

    Full text link
    In this paper we present a model where the modified Landau-like levels of charged particles in a magnetic field are determined due to the modified smoothness of R4\mathbb{R}^{4} as underlying structure of the Minkowski spacetime. Then the standard smoothness of R4\mathbb{R}^{4} is shifted to the exotic Rk4\mathbb{R}_{k}^{4}, k=2pk=2p, p=1,2...p=1,2.... This is achieved by superstring theory using gravitational backreaction induced from a strong, almost constant magnetic field on standard R4\mathbb{R}^{4}. The exact string background containing flat R4\mathbb{R}^{4} is replaced consistently by the curved geometry of SU(2)k×RSU(2)_{k}\times\mathbb{R} as part of the modified exact backgrounds. This corresponds to the change of smoothness on R4\mathbb{R}^{4} from the standard R4\mathbb{R}^{4} to some exotic Rk4\mathbb{R}_{k}^{4}. The calculations of the spectra are using the CFT marginal deformations and Wess-Zumino-Witten (WZW) models. The marginal deformations capture the effects of the magnetic field as well as its gravitational backreactions. The spectra depend on even level kk of WZW on SU(2). At the same time the WZ term as element of H3(SU(2),R)H^{3}(SU(2),\mathbb{R}) determines also the exotic smooth Rk4\mathbb{R}_{k}^{4}. As the consequence we obtain a non-zero mass-gap emerges in the spectrum induced from the presence of an exotic Rk4\mathbb{R}_{k}^{4}.Comment: 11 pages, Revtex4-1, will appear IJGMMP Vol. 50(1), 201

    FtsZ-dependent elongation of a coccoid bacterium

    Get PDF
    A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZG193D allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZG193D filaments are more twisted and shorter than wild-type filaments. In vivo, M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci

    Energy Reallocation to Breeding Performance through Improved Nest Building in Laboratory Mice.

    Get PDF
    Mice are housed at temperatures (20-26°C) that increase their basal metabolic rates and impose high energy demands to maintain core temperatures. Therefore, energy must be reallocated from other biological processes to increase heat production to offset heat loss. Supplying laboratory mice with nesting material may provide sufficient insulation to reduce heat loss and improve both feed conversion and breeding performance. Naïve C57BL/6, BALB/c, and CD-1breeding pairs were provided with bedding alone, or bedding supplemented with either 8g of Enviro-Dri, 8g of Nestlets, for 6 months. Mice provided with either nesting material built more dome-like nests than controls. Nesting material improved feed efficiency per pup weaned as well as pup weaning weight. The breeding index (pups weaned/dam/week) was higher when either nesting material was provided. Thus, the sparing of energy for thermoregulation of mice given additional nesting material may have been responsible for the improved breeding and growth of offspring

    The Śnieżka peatland as a candidate for the Global Boundary Stratotype Section and Point for the Anthropocene series

    Get PDF
    The subalpine, atmospherically fed Śnieżka peatland, located in the Polish part of the Sudetes, is one of the nominated candidates for the GSSP of the Anthropocene. Data from two profiles, Sn1 (2012) and Sn0 (2020), from this site are critical for distinguishing the proposed epoch, while an additional core Sn2 is presented to support main evidence. The Sn0 archive contains a wide array of critical markers such as plutonium (Pu), radiocarbon (F14C), fly ash particles, Hg and stable C and N isotopes which are consistent with the previously well documented 210Pb/14C dated Sn1 profile, which provides a high-resolution and comprehensive database of trace elements and rare earth elements (REE), Pb isotopes, Pu, Cs, pollen and testate amoebae. The 1952 worldwide appearance of Pu, owing to its global synchronicity and repeatability between the cores, is proposed here as a primary marker of the Anthropocene, supported by the prominent upturn of selected chemostratigraphic and biostratigraphic indicators as well as the appearance of technofossils and artificial radionuclides

    Complex-Orbital Order in Fe_3O_4 and Mechanism of the Verwey Transition

    Full text link
    Electronic state and the Verwey transition in magnetite (Fe_3O_4) are studied using a spinless three-band Hubbard model for 3d electrons on the B sites with the Hartree-Fock approximation and the exact diagonalisation method. Complex-orbital, e.g., 1/sqrt(2)[|zx> + i |yz>], ordered (COO) states having noncollinear orbital moments ~ 0.4 mu_B on the B sites are obtained with the cubic lattice structure of the high-temperature phase. The COO state is a novel form of magnetic ordering within the orbital degree of freedom. It arises from the formation of Hund's second rule states of spinless pseudo-d molecular orbitals in the Fe_4 tetrahedral units of the B sites and ferromagnetic alignment of their fictitious orbital moments. A COO state with longer periodicity is obtained with pseudo-orthorhombic Pmca and Pmc2_1 structures for the low-temperature phase. The state spontaneously lowers the crystal symmetry to the monoclinic and explains experimentally observed rhombohedral cell deformation and Jahn-Teller like distortion. From these findings, we consider that at the Verwey transition temperature, the COO state remaining to be short-range order impeded by dynamical lattice distortion in high temperature is developed into that with long-range order coupled with the monoclinic lattice distortion.Comment: 16 pages, 13 figures, 6 tables, accepted for publication in J. Phys. Soc. Jp

    Age- and season-dependent pattern of flavonol glycosides in Cabernet Sauvignon grapevine leaves

    Get PDF
    Flavonols play key roles in many plant defense mechanisms, consequently they are frequently investigated as stress sensitive factors in relation to several oxidative processes. It is well known that grapevine (Vitis vinifera L.) can synthesize various flavonol glycosides in the leaves, however, very little information is available regarding their distribution along the cane at different leaf levels. In this work, taking into consideration of leaf position, the main flavonol glycosides of a red grapevine cultivar (Cabernet Sauvignon) were profiled and quantified by HPLC–DAD analysis. It was found that amount of four flavonol glycosides, namely, quercetin-3-O-galactoside, quercetin-3-O-glucoside, kaempferol-3-O-glucoside and kaempferol-3-O-glucuronide decreased towards the shoot tip. Since leaf age also decreases towards the shoot tip, the obtained results suggest that these compounds continuously formed by leaf aging, resulting in their accumulation in the older leaves. In contrast, quercetin-3-O-glucuronide (predominant form) and quercetin-3-O-rutinoside were not accumulated significantly by aging. We also pointed out that grapevine boosted the flavonol biosynthesis in September, and flavonol profile differed significantly in the two seasons. Our results contribute to the better understanding of the role of flavonols in the antioxidant defense system of grapevine
    corecore