46 research outputs found

    Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates

    Get PDF
    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons

    Intraventricular administration of galanin does not affect behaviors associated with locus coeruleus activation in rats.

    No full text
    The 29 amino acid peptide galanin (GAL) coexists with norepinephrine in rat locus coeruleus (LC) neurons to a remarkably high degree. The effects of central administration of GAL were examined in three behavioral paradigms that putatively involve increases in the activity of LC neurons. GAL did not affect behavioral signs associated with naloxone-precipitated withdrawal in rats treated chronically with morphine, a condition in which the firing rate of LC neurons is dramatically increased, although the behavioral signs of withdrawal were abolished by clonidine. Foot shock induced freezing behavior was similarly unaffected by either dose of GAL but was significantly diminished by clonidine and the corticotropin-releasing factor (CRF) antagonist alpha-helical CRF. GAL did not influence the decrease in exploratory activity in a novel open field induced by idazoxan. The behavioral activity of the peptide and route of administration were confirmed in a feeding paradigm. Doses of GAL that were inactive in the three paradigms were active in stimulating intake of a palatable food to a similar degree as clonidine-stimulated intake. These results suggest that intraventricularly administered GAL may not influence behaviors thought to be mediated by activation of neurons in the LC

    Estimation of the correlation between the retention of s-triazine derivatives and some molecular descriptors

    No full text
    In this study, 14 newly synthesized s-triazine derivatives were investigated by means of reversed-phase thin-layer chromatography (TLC) on C-18 stationary and two different mobile phases: acetonitrile-water and methanol-water. Quantitative structure-retention relationship (QSRR) was developed for a series of s-triazine compounds by the multiple linear regression (MLR) analysis. An MLR procedure was used to model the relation-ships between molecular descriptors and retention of s-triazine derivatives. Physico-chemical molecular descriptors were calculated from the optimized structures. Statistically significant and physically meaningful QSRRs were obtained

    Application of lipophilicity parameters in QSRR analysis of newly synthesized s-triazine derivatives: Prediction of the retention behavior

    No full text
    Considerable attention has been paid to the analysis of chemicals in the s-triazine group, due to their widespread use in agricultural chemistry and their subsequent impact on biological systems. For initial chemical screening of the activity of newly synthesized compounds, it is recommended to determine their lipophilicity and physico-chemical property in relation to biological activity. Lipophilicity is difficult to quantify. The most widely accepted measure of lipophilicity is the octanol-water partition coefficient. Measurement of the octanol-water partition coefficients is achieved by an alternative method, i.e. reversed-phase liquid chromatography. Reversed-phase thin-layer chromatography (RP TLC) is a rapid method for the analysis of large number of s-triazine type compounds. Certain relationship between the structure of s-triazine compounds and their mobility on silica gel impregnated with paraffin oil have recently been demonstrated. The retention behavior of compounds in various chromatographic systems strongly depends on their physico-chemical properties. Recently, much effort was given in finding adequate mathematical model relating the retention of the given analyte to its physico-chemical and structural parameters (descriptors). These correlations are known as quantitative structure-retention relationships (QSRR), which offer a powerful tool for the prediction of separation behavior. The QSRR equations describing retention constants RM0, determined for different modifiers in mobile phase in terms of logarithms of n-octanol-water partition coefficients, were derived. The partition coefficients (AlogPs, AClogP, AB/logP, milogP, AlogP, MlogP, logPKowin, XlogP2, XlogP3, ACDlogP i ClogP) were calculated by application of different software packages. The goal of this paper was to select the logP data and TLC system that best characterize octanol/water partitioning and thus the lipophilicity of the investigated molecules

    Analysis and classification of 304 mutant alleles in patients with type 1 and type 3 Gaucher disease.

    Get PDF
    Gaucher disease results from the inherited deficiency of the enzyme glucocerebrosidase (EC 3.2.1.45). Although >100 mutations in the gene for human glucocerebrosidase have been described, most genotype-phenotype studies have focused upon screening for a few common mutations. In this study, we used several approaches-including direct sequencing, Southern blotting, long-template PCR, restriction digestions, and the amplification refraction mutation system (ARMS)-to genotype 128 patients with type 1 Gaucher disease (64 of Ashkenazi Jewish ancestry and 64 of non-Jewish extraction) and 24 patients with type 3 Gaucher disease. More than 97% of the mutant alleles were identified. Fourteen novel mutations (A90T, N117D, T134I, Y135X, R170C, W184R, A190T, Y304X, A341T, D399Y, c.153-154insTACAGC, c.203-204insC, c.222-224delTAC, and c.1122-1123insTG) and many rare mutations were detected. Recombinant alleles were found in 19% of the patients. Although 93% of the mutant alleles in our Ashkenazi Jewish type 1 patients were N370S, c.84-85insG, IVS2+1G-->A or L444P, these four mutations accounted for only 49% of mutant alleles in the non-Jewish type 1 patients. Genotype-phenotype correlations were attempted. Homozygosity or heterozygosity for N370S resulted in type 1 Gaucher disease, whereas homozygosity for L444P was associated with type 3. Genotype L444P/recombinant allele resulted in type 2 Gaucher disease, and homozygosity for a recombinant allele was associated with perinatal lethal disease. The phenotypic consequences of other mutations, particularly R463C, were more inconsistent. Our results demonstrate a high rate of mutation detection, a large number of novel and rare mutations, and an accurate assessment of the prevalence of recombinant alleles. Although some genotype-phenotype correlations do exist, other genetic and environmental factors must also contribute to the phenotypes encountered, and we caution against relying solely upon genotype for prognostic or therapeutic judgements

    Kappa opioid receptor contributes to EGF-stimulated neurite extension in development

    No full text
    Epidermal growth factor (EGF), a mitogen, also stimulates neurite extension during development, but the underlying mechanism is elusive. This study reveals a functional role for kappa opioid receptor (KOR) in EGF-stimulated neurite extension, and the underlying mechanism. EGF and activated EGF receptor (EGFR) levels are elevated in embryonic spinal cords during late gestation stages, with concurrent rise in protein levels of KOR and axon extension markers, growth-associated protein 43 (GAP43), and transient axonal glycoprotein-1 (TAG-1). Both GAP43 and TAG-1 levels are significantly lower in KOR-null (KOR−/−) spinal cords, and EGFR inhibitors effectively reduce the levels of KOR, GAP43, and TAG-1 in wild-type embryonic spinal cords. For KOR−/− or KOR-knockdown dorsal root ganglion (DRG) neurons, EGF can no longer effectively stimulate axon extension, which can be rescued by introducing a constitutive KOR expressing vector but not by a regulated KOR vector carrying its 5′ untranslated region, which can be bound and repressed by growth factor receptor-bound protein 7 (Grb7). Furthermore, blocking KOR activation by application of anti-dynorphin, KOR antagonist, or EGFR inhibitor effectively reduces axon extension of DRG neurons. Thus, EGF-stimulated axon extension during development is mediated, at least partially, by specific elevation of KOR protein production at posttranscriptional level, as well as activation of KOR signaling. The result also reveals an action of EGF to augment posttranscriptional regulation of certain mRNAs during developmental stages
    corecore