79 research outputs found

    Decision Analysis for Jack-up Foundation Embedment in Shallow Offshore Nigeria

    Get PDF
    Drilling operations in offshore waters less than 120m is commonly carried out on Jack-up rigs. The installation of spudcan footing of these rigs is both delicate and significantly risky, with potential prospects of litigation, where foundation analysis decisions are defective. Case studies of spudcan soil penetration analysis for different soil conditions and stratigraphic configurations are presented along with the decision analysis for spudcan foundation embedment. The study identifies significant natural variability in soil composition, reflecting the complex hydrodynamics governing sedimentation in the Niger Delta. It confirms the working load and spudcan geometry as crucial factors in the determination of risks free embedment depths

    A novel in vitro periodontal pocket model to evaluate the effect of root surface instrumentation on biofilm-epithelial cell interactions.

    Get PDF
    OBJECTIVE To develop a novel in vitro periodontal pocket model for evaluating the effect of two different root surface instrumentation modalities on biofilm-epithelial cell interactions. MATERIALS AND METHODS An artificial periodontal pocket model was created using an impression material. Dentin discs were prepared and incubated for 3.5 days with a biofilm consisting of 12 bacterial strains. Then, the discs were inserted into the pocket model and instrumented for 10 s or 10 strokes either with ultrasonics (US) or hand instruments (HI). Subsequently, a glass slide coated with epithelial cells was placed in close vicinity to the discs. After incubation of the pocket model in a 5% CO2 atmosphere for 6 h, residual bacteria of the biofilm as well as bacteria adhering to or invaded into epithelial cells were determined using colony-forming unit (cfu) counts and real-time PCR. Further, as a parameter of the pro-inflammatory cell response, interleukin (IL)-8 expression was determined by ELISA. RESULTS Compared to untreated control, HI reduced the cfu counts by 0.63 log10 (not significant) and US by 1.78 log10 (p = 0.005) with a significant difference between the treatment modalities favoring US (p = 0.048). By trend, lower detection levels of Tannerella forsythia were detected in the US group compared to HI. Concerning the interaction with epithelial cells, half of the control and the HI samples showed epithelial cells with attaching or invading bacteria, while US displayed bacteria only in two out of eight samples. In addition, US resulted in significantly lower IL-8 secretion by epithelial cells compared to the untreated control. Between HI and controls, no statistically significant difference in IL-8 secretion was found. CONCLUSION This newly developed in vitro model revealed in terms of biofilm-epithelial cell interaction after root surface instrumentation that compared to hand curettes, ultrasonic instrumentation appeared to be more effective in removing bacterial biofilm and in decreasing the inflammatory response of epithelium to biofilm. CLINICAL RELEVANCE Ultrasonic instrumentation might be more advantageous to reduce cellular inflammatory response than hand instruments

    Novel Low-Temperature Poss-Containing Siloxane Elastomers

    Get PDF
    One route to increased aircraft performance is through the use of flexible, shape-changeable aerodynamics effectors. However, state of the art materials are not flexible or durable enough over the required broad temperature range. Mixed siloxanes were crosslinked by polyhedral oligomeric silsesquioxanes (POSS) producing novel materials that remained flexible and elastic from -55 to 94 C. POSS molecules were chemically modified to generate homogeneous distributions within the siloxane matrix. High resolution scanning electron microscope (HRSEM) images indicated homogenous POSS distribution up to 0.8 wt %. Above the solubility limit, POSS aggregates could be seen both macroscopically and via SEM (approx.60-120 nm). Tensile tests were performed to determine Young s modulus, tensile strength, and elongation at break over the range of temperatures associated with transonic aircraft use (-55 to 94 C; -65 to 200 F). The siloxane materials developed here maintained flexibility at -55 C, where previous candidate materials failed. At room temperature, films could be elongated up to 250 % before rupturing. At -55 and 94 C, however, films could be elongated up to 400 % and 125 %, respectively

    Towards Onboard Orbital Tracking of Seasonal Polar Volatiles on Mars

    Get PDF
    Current conditions on Mars support both a residual polar cap, composed mainly of water ice, and a seasonal cap, composed of CO2, which appears and disappears each winter. Kieffer and Titus characterized the recession of the seasonal south polar cap using an arctangent curve fit based on data from the Thermal Emission Spectrometer on Mars Global Surveyor [1]. They also found significant interannual deviations, at the regional scale, in the recession rate [2]. Further observations will enable the refinement of our models of polar cap evolution in both hemispheres. We have developed the Bimodal Image Temperature (BIT) Histogram Analysis method for the automated detection and tracking of the seasonal polar ice caps on Mars. It is specifically tailored for possible use onboard a spacecraft. We have evaluated BIT on uncalibrated data collected by the Thermal Emission Imaging System (THEMIS) instrument [3] on the Mars Odyssey spacecraft. In this paper, we focus on the northern seasonal cap, but our approach is directly applicable to the future analysis of the southern seasonal ice cap as well

    Sequential osseointegration of a novel implant system based on 3D printing in comparison with conventional titanium implants.

    Get PDF
    OBJECTIVES To evaluate the sequential osseointegration of a novel titanium implant system based on a 3D printing technology in comparison with conventional titanium implants. MATERIAL AND METHODS Two novel titanium implants based on 3D printing were tested in the mandible of eight Beagle dogs. As a control, two different commercially available titanium implants were used. The implants were staged to accommodate healing periods of 2 and 6 weeks. The primary outcome variable was bone-to-implant contact (BIC) in non-decalcified tissue sections and micro-CT analysis. RESULTS Histomorphometrically, the proportions of tissues adjacent to the implant surfaces were similar for all implants, whereas the BIC percentage of new mineralized bone was greater for the control implants after both 2 and 6 weeks (p < .05). Micro-CT analysis revealed increasing osseous volume and BIC from 2 to 6 weeks. In contrast to the histomorphometry, the BIC evaluation with the micro-CT data revealed a significantly higher BIC for the two test implants compared with controls (p < .001). The analysis of the total implant surface area disclosed a value that was approximately double as high for the test compared to the control implants. CONCLUSIONS The novel titanium implant system based on 3D printing yielded values for osseointegration that were adequate and satisfactory. The higher percentage of new mineralized bone in the control implants is explained by the fact of a completely different three-dimensional surface area

    Uniqueness of Nash equilibria in quantum Cournot duopoly game

    Full text link
    A quantum Cournot game of which classical form game has multiple Nash equilibria is examined. Although the classical equilibria fail to be Pareto optimal, the quantum equilibrium exhibits the following two properties, (i) if the measurement of entanglement between strategic variables chosen by the competing firms is sufficiently large, the multiplicity of equilibria vanishes, and, (ii) the more strongly the strategic variables are entangled, the more closely the unique equilibrium approaches to the optimal one.Comment: 7 pages, 2 figure

    Combination of optison with ultrasound and electroporation increases albumin and thrompoietin transgene expression whilst elongation factor promoter prolongs its duration

    Get PDF
    Hypoalbuminaemia and thrombocytopaenia are two clinical problems frequently encountered in patients with chronic liver failure or cancer following treatment with chemotherapy. The current study was designed to assess the magnitude and duration of thrombopoietin and albumin transgene expression hoping to increase the production of albumin and platelets. Immunocompetent and immunocompromised (nude) mice were injected intramuscularly with plasmids expressing either human serum albumin or human thrombopoietin. The therapeutic expression cassette of the plasmids was driven by either CMV or elongation factor 1- promoters respectively. In order to achieve muscle specific expression both gene constructs included the myosin light chain enhancer. The experiment was conducted in a group of mice which were injected with the transgene plasmid either in normal saline or plasmid followed by electroporation, ultrasound, optison and a combination of all three to increase transgene expression. The result showed that plasmids with the CMV promoter induced the highest transgenic expression lasting for one week whilst plasmids with the elongation factor 1-alpha promoter produced a weaker expression lasting for a longer and more stable duration of expression up to 3 months in both immunocompetent and nude mice. The combination of electroporation and ultrasound with Optison TM provided the highest transgene expression. We concluded that it would be possible to increase albumin and platelets production by an intramuscular injection of plasmids expressing human albumin and thromopoietin. A combination of electroporation and ultrasound with Optison TM can increase their expression

    Ultrafast Structural Dynamics of BlsA, a Photoreceptor from the Pathogenic Bacterium Acinetobacter baumannii

    Get PDF
    Acinetobacter baumannii is an important human pathogen that can form biofilms and persist under harsh environmental conditions. Biofilm formation and virulence are modulated by blue light, which is thought to be regulated by a BLUF protein, BlsA. To understand the molecular mechanism of light sensing, we have used steady-state and ultrafast vibrational spectroscopy to compare the photoactivation mechanism of BlsA to the BLUF photosensor AppA from Rhodobacter sphaeroides. Although similar photocycles are observed, vibrational data together with homology modeling identify significant differences in the β5 strand in BlsA caused by photoactivation, which are proposed to be directly linked to downstream signaling

    BLUF Domain Function Does Not Require a Metastable Radical Intermediate State

    Get PDF
    BLUF (blue light using flavin) domain proteins are an important family of blue light-sensing proteins which control a wide variety of functions in cells. The primary light-activated step in the BLUF domain is not yet established. A number of experimental and theoretical studies points to a role for photoinduced electron transfer (PET) between a highly conserved tyrosine and the flavin chromophore to form a radical intermediate state. Here we investigate the role of PET in three different BLUF proteins, using ultrafast broadband transient infrared spectroscopy. We characterize and identify infrared active marker modes for excited and ground state species and use them to record photochemical dynamics in the proteins. We also generate mutants which unambiguously show PET and, through isotope labeling of the protein and the chromophore, are able to assign modes characteristic of both flavin and protein radical states. We find that these radical intermediates are not observed in two of the three BLUF domains studied, casting doubt on the importance of the formation of a population of radical intermediates in the BLUF photocycle. Further, unnatural amino acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines, thus modifying the driving force for the proposed electron transfer reaction; the rate changes observed are also not consistent with a PET mechanism. Thus, while intermediates of PET reactions can be observed in BLUF proteins they are not correlated with photoactivity, suggesting that radical intermediates are not central to their operation. Alternative nonradical pathways including a keto–enol tautomerization induced by electronic excitation of the flavin ring are considered

    A machine learning classifier for fast radio burst detection at the VLBA

    Get PDF
    Time domain radio astronomy observing campaigns frequently generate large volumes of data. Our goal is to develop automated methods that can identify events of interest buried within the larger data stream. The V-FASTR fast transient system was designed to detect rare fast radio bursts within data collected by the Very Long Baseline Array. The resulting event candidates constitute a significant burden in terms of subsequent human reviewing time. We have trained and deployed a machine learning classifier that marks each candidate detection as a pulse from a known pulsar, an artifact due to radio frequency interference, or a potential new discovery. The classifier maintains high reliability by restricting its predictions to those with at least 90% confidence. We have also implemented several efficiency and usability improvements to the V-FASTR web-based candidate review system. Overall, we found that time spent reviewing decreased and the fraction of interesting candidates increased. The classifier now classifies (and therefore filters) 80%–90% of the candidates, with an accuracy greater than 98%, leaving only the 10%–20% most promising candidates to be reviewed by humans
    • …
    corecore