27 research outputs found

    Advances in exosome therapies in ophthalmology–From bench to clinical trial

    Get PDF
    During the last decade, the fields of advanced and personalized therapeutics have been constantly evolving, utilizing novel techniques such as gene editing and RNA therapeutic approaches. However, the method of delivery and tissue specificity remain the main hurdles of these approaches. Exosomes are natural carriers of functional small RNAs and proteins, representing an area of increasing interest in the field of drug delivery. It has been demonstrated that the exosome cargo, especially miRNAs, is at least partially responsible for the therapeutic effects of exosomes. Exosomes deliver their luminal content to the recipient cells and can be used as vesicles for the therapeutic delivery of RNAs and proteins. Synthetic therapeutic drugs can also be encapsulated into exosomes as they have a hydrophilic core, which makes them suitable to carry water-soluble drugs. In addition, engineered exosomes can display a variety of surface molecules, such as peptides, to target specific cells in tissues. The exosome properties present an added advantage to the targeted delivery of therapeutics, leading to increased efficacy and minimizing the adverse side effects. Furthermore, exosomes are natural nanoparticles found in all cell types and as a result, they do not elicit an immune response when administered. Exosomes have also demonstrated decreased long-term accumulation in tissues and organs and thus carry a low risk of systemic toxicity. This review aims to discuss all the advances in exosome therapies in ophthalmology and to give insight into the challenges that would need to be overcome before exosome therapies can be translated into clinical practice

    Dynamics of hydration water in gelatin and hyaluronic acid hydrogels

    Full text link
    [EN] We employed broadband dielectric spectroscopy (BDS), for the investigation of the water dynamics in partially hydrated hyaluronic acid (HA), and gelatin (Gel), enzymatically crosslinked hydrogels, in the water fraction ranges [Formula: see text]. Our results indicate that at low hydrations ([Formula: see text]), where the dielectric response of the hydrogels is identical during cooling and heating, water plasticizes strongly the polymeric matrix and is organized in clusters giving rise to [Formula: see text]-process, secondary water relaxation and to an additional slower relaxation process. This later process has been found to be related with the dc charge conductivity and can be described in terms of the conduction current relaxation mechanism. At slightly higher hydrations, however, always below the hydration level where ice is formed during cooling, we have recorded in HA hydrogel a strong water dielectric relaxation process, [Formula: see text], which has Arrhenius-like temperature dependence and large time scale resembling relaxation processes recorded in bulk low density amorphous solid water structures. This relaxation process shows a strong-to-fragile transition at [Formula: see text]C and our data suggest that the VTF-like process recorded at [Formula: see text]C is controlled by the same molecular process like long range charge transport. In addition, our data imply that the crossover temperature is related with the onset of structural rearrangements (increase in configurational entropy) of the macromolecules. In partially crystallized hydrogels ([Formula: see text]) HA exhibits at low temperatures the ice dielectric process consistent with the bulk hexagonal ice, whereas Gel hydrogel exhibits as main low temperature process a slow relaxation process that refers to open tetrahedral structures of water similar to low density amorphous ice structures and to bulk cubic ice. Regarding the water secondary relaxation processes, we have shown that the [Formula: see text]-process and the [Formula: see text] process are activated in water hydrogen bond networks with different structures.The support from Ministerio de Economia, Industria y Competitividad (MINECO) through the MAT2016-76039-C4-1-R project (including the FEDER funds) is acknowledged. The CIBER-BBN initiative is funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. We thank Dr. P. Klonos for his assistance in preparing scheme 1.Kripotou, S.; Zafeiris, K.; Culebras-Martinez, M.; Ferrer, G.; Kyritsis, A. (2019). Dynamics of hydration water in gelatin and hyaluronic acid hydrogels. The European Physical Journal E. 42(8):1-18. https://doi.org/10.1140/epje/i2019-11871-2S118428M. Heyden, J. Chem. Phys. 141, 22D509 (2014)D. Laage, T. Elsaesser, J.T. Hynes, Chem. Rev. 117, 10694 (2017)R. Biswas, B. Bagchi, J. Phys.: Condens. Matter 30, 013001 (2018)A.S. Hoffman, Adv. Drug Deliv. Rev. 43, 3 (2002)B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Adv. Mater. 21, 3307 (2009)S. Khodadadi, A.P. Sokolov, Soft Matter 11, 4984 (2015)S. Cerveny, I. Combarro-Palacios, J. Swenson, Phys. Chem. Lett. 7, 4093 (2016)F. Mallamace, C. Corsaro, P. Baglioni, E. Fratini, S.-H. Chen, J. Phys.: Condens. Matter 24, 064103 (2012)P.W. Fenimore et al., Chem. Phys. 424, 2 (2013)W.G. Liu, K.D. Yao, Polymer 42, 3943 (2001)E. Mamontov, Y. Yue, J. Bahadur, J. Guo, C.I. Contescu, N.C. Gallego, Y.B. Melnichenko, Carbon 111, 705 (2017)J. Swenson, Phys. Chem. Chem. Phys. 20, 30095 (2018)J.L. Finney, Philos. Trans. R. Soc. Lond. B 359, 1145 (2004)P.G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003)M. Kobayashi, H. Tanaka, J. Phys. Chem. B 115, 14077 (2011)G. Bullock, V. Molinero, Faraday Discuss. 167, 371 (2013)K. Amann-Winkel, R. Böhmer, C. Gainaru, F. Fujara, B. Geil, T. Loerting, Rev. Mod. Phys. 88, 011002 (2016)N. Kastelowitz, V. Molinero, ACS Nano 12, 8234 (2018)U. Kaatze, J. Mol. Liq. 162, 105 (2011)G. Franzese, V. Bianco, S. Iskrov, Food Biophys. 6, 186 (2011)M.D. Fayer, Acc. Chem. Res. 45, 3 (2012)D. Russo, J. Teixeira, J. Non-Cryst. Solids 407, 459 (2015)L. Zhao, K. Ma, Z. Yang, Int. J. Mol. Sci. 16, 8454 (2015)I. Brovchenko, A. Oleinikova, Chem. Phys. Chem. 9, 2695 (2008)M. Rosenstihl, K. KĂ€mpf, F. Klameth, M. Sattig, M. Vogel, J. Non-Cryst. Solids 407, 449 (2015)J. Wolfe, G. Bryant, K.L. Koster, CryoLetters 23, 157 (2002)L. Lupi, A. Hudait, V. Molinero, J. Am. Chem. Soc. 136, 3156 (2014)P. Gallo et al., Chem. Rev. 116, 7463 (2016)O. Mishima, H.E. Stanley, Nature 396, 329 (1998)H.E. Stanley et al., J. Non-Cryst. Solids 357, 629 (2011)F. Bruni, R. Mancinelli, M.A. Ricci, J. Mol. Liq. 176, 39 (2012)F. Caupin, J. Non-Cryst. Solids 407, 441 (2015)N. Shinyashiki, M. Shimomura, T. Ushiyama, T. Miyagawa, S. Yagihara, J. Phys. Chem. B 111, 10079 (2007)S. Gekle, R.R. Netz, J. Chem. Phys. 137, 104704 (2012)P. Ben Ishai, S.R. Tripathi, K. Kawase, A. Puzenko, Y. Feldman, Phys. Chem. Chem. Phys. 17, 15428 (2015)U. Kaatze, J. Chem. Phys. 147, 024502 (2017)D.R. Martin, J.E. Forsmo, D.V. Matyushov, J. Phys. Chem. B 122, 3418 (2018)D.E. Stillman, J.A. MacGregor, R.E. Grimm, J. Geophys. Res. 118, 1 (2013)I. Popov, A. Puzenko, A. Khamzin, Y. Feldman, Phys. Chem. Chem. Phys. 17, 1489 (2015)K. Sasaki, R. Kita, N. Shinyashiki, S. Yagihara, J. Phys. Chem. B 120, 3950 (2016)T. Yasuda, K. Sasaki, R. Kita, N. Shinyashiki, S. Yagihara, J. Phys. Chem. B 121, 2896 (2017)P. Pissis, A. Kyritsis, J. Polym. Sci. Part B: Polym. Phys. 51, 159 (2013)J. Swenson, S. Cerveny, J. Phys.: Condens. Matter 27, 033102 (2015)S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, L. Xu, Chem. Rev. 116, 7608 (2016)N. Shinyashiki, S. Sudo, S. Yagihara, A. Spanoudaki, A. Kyritsis, P. Pissis, J. Phys. C: Condens. Matter 19, 205113 (2007)S. Capaccioli, K.L. Ngai, N. Shinyashiki, J. Phys. Chem. B 111, 8197 (2007)S. Cerveny, Á. AlegrĂ­a, J. Colmenero, Phys. Rev. E 77, 031803 (2008)C. Gainaru, A. Fillmer, R. Böhmer, J. Phys. Chem. B 113, 12628 (2009)A. Kyritsis, A. Panagopoulou, P. Pissis, R.S.i. Serra, J.L. Gomez Ribelles, N. Shinyashiki, IEEE Trans. Dielectr. Electr. Insul. 19, 1239 (2012)A. Panagopoulou, A. Kyritsis, N. Shinyashiki, P. Pissis, J. Phys. Chem. B 116, 4593 (2012)A. Panagopoulou, A. Kyritsis, M. Vodina, P. Pissis, Biochim. Biophys. Acta 1834, 977 (2013)K.L. Ngai, S. Capaccioli, S. Ancherbak, N. Shinyashiki, Philos. Mag. 91, 1809 (2011)K.L. Ngai, S. Capaccioli, A. Paciaroni, Biochim. Biophys. Acta 1861, 3553 (2017)S. Cerveny, G.A. Schwartz, R. Bergman, J. Swenson, Phys. Rev. Lett. 93, 245702 (2004)J. Swenson, J. Phys.: Condens. Matter 16, S5317 (2004)S. Capaccioli, K.L. Ngai, S. Ancherbak, P.A. Rolla, N. Shinyashiki, J. Non-Cryst. Solids 357, 641 (2011)S. Capaccioli, K.L. Ngai, J. Chem. Phys. 135, 104504 (2011)J.E. Scott, F. Heatley, Biomacromolecules 3, 547 (2002)C. Alber, J. Engblom, P. Falkman, V. Kocherbitov, J. Phys. Chem. B 119, 4211 (2015)T. Hatakeyama, M. Tanaka, A. Kishi, H. Hatakeyama, Thermochim. Acta 532, 159 (2012)A. PruƝovĂĄ, F.J. Vergeldt, J. KucerĂ­k, Carbohydr. Polym. 95, 515 (2013)S. Kawabe, M. Seki, H. Tabata, J. Appl. Phys. 115, 125 (2014)O. Miyawaki, C. Omote, K. Matsuhira, Biopolymers 103, 685 (2015)S. Thakur, P.P. Govender, M.A. Mamo, S. Tamulevicius, K. Kumar, V. Thakur, Vacuum 146, 396 (2017)A. Panagopoulou, J. VĂĄzquez Molina, A. Kyritsis, M. MonleĂłn Pradas, A. Valles Lluch, G. Gallego Ferrer, P. Pissis, Food Biophys. 8, 192 (2013)K. Sasaki, R. Kita, N. Shinyashiki, S. Yagihara, J. Chem. Phys. 140, 124506 (2014)K. Sasaki, A. Panagopoulou, R. Kita, N. Shinyashiki, S. Yagihara, A. Kyritsis, P. Pissis, J. Phys. Chem. B 121, 265 (2017)S. Poveda-Reyes, V. Moulisova, E. SanmartĂ­n-MasiĂĄ, L. Quintanilla-Sierra, M. SalmerĂłn-SĂĄnchez, G. Gallego Ferrer, Macromol. Biosci. 16, 1311 (2016)V. Moulisova, S. Poveda-Reyes, E. SanmartĂ­n-MasiĂĄ, L. Quintanilla-Sierra, M. SalmerĂłn-SĂĄnchez, G. Gallego Ferrer, ACS Omega 2, 7609 (2017)E. SanmartĂ­n-MasiĂĄ, S. Poveda-Reyes, G. Gallego Ferrer, Int. J. Polym. Mater. Polym. Biomater. 66, 280 (2017)L. Greenspan, J. Res. Natl. Bur. Stand. A Phys. Chem. 81A, 89 (1977)F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)M. WĂŒbbenhorst, J. van Turnhout, J. Non-Cryst. Solids 305, 40 (2002)R. Pelster, A. Kops, G. Nimtz, A. Enders, H. Kietzmann, P. Pissis, A. Kyritsis, D. Woermann, Ber. Bunsenges. Phys. Chem. 97, 666 (1993)K. Pathmanathan, G.P. Johari, J. Chem. Soc., Faraday Trans. 90, 1143 (1994)Y. Suzuki, M. Steinhart, R. Graf, H.-J. Butt, G. Floudas, J. Phys. Chem. B 119, 14814 (2015)G.P. Johari, E. Whalley, J. Chem. Phys. 75, 1333 (1981)P.M. Suherman, P. Taylor, G. Smith, J. Non-Cryst. Solids 305, 317 (2002)K.-D. Kreuer, Chem. Mater. 8, 610 (1996)M.G. Mazza et al., Proc. Natl. Acad. Sci. U.S.A. 108, 19873 (2011)E. Brini, C.J. Fennell, M. Fernandez-Serra, B. Hribar-Lee, M. Luksic, K.A. Dill, Chem. Rev. 117, 12385 (2017)O. Andersson, J. Phys.: Condens. Matter 20, 244115 (2008)C. Gainaru et al., Proc. Natl. Acad. Sci. U.S.A. 111, 17402 (2014)G.P. Johari, O. Andersson, Thermochim. Acta 461, 14 (2007)E.B. Moore, E. de la Lave, K. Welke, D.A. Scherlis, V. Molinero, Phys. Chem. Chem. Phys. 12, 4124 (2010)N. Shinyashiki et al., J. Phys. Chem. B 113, 14448 (2009)E.B. Moore, J.T. Allen, V. Molinero, J. Phys. Chem. C 116, 7507 (2012)S.R. Gough, D.W. Davidson, J. Chem. Phys. 52, 5442 (1970)T. Loerting et al., J. Non-Cryst. Solids 407, 423 (2015)K. Yamamoto, H. Namikawa, Jpn. J. Appl. Phys. 27, 1845 (1988)K. Yamamoto, H. Namikawa, Jpn. J. Appl. Phys. 28, 2523 (1989)P. Pissis, A. Kyritsis, V.V. Shilov, Solid State Ion. 125, 203 (1999)J.C. Dyre, T.B. SchrĂžder, Rev. Mod. Phys. 72, 873 (2000)J.C. Dyre, P. Maass, B. Roling, D.L. Sidebottom, Rep. Prog. Phys. 72, 046501 (2009)C. Gainaru et al., J. Phys. Chem. B 120, 11074 (2016)M. Nakanishi, A.P. Sokolov, J. Non-Cryst. Solids 407, 478 (2015
    corecore