38 research outputs found

    A generic algorithm for checking exhaustivity of pattern matching

    Get PDF
    Algebraic data types and pattern matching are key features of functional programming languages. Exhaustivity checking of pattern matching is a safety belt that defends against unmatched exceptions at runtime and boosts type safety. However, the presence of language features like inheritance, typecase, traits, GADTs, path-dependent types and union types makes the checking difficult and the algorithm complex. In this paper we propose a generic algorithm that decouples the checking algorithm from specific type theories. The decoupling makes the algorithm simple and enables easy customization for specific type systems

    Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects

    Get PDF
    Background: High dose oral thiamine may have a role in treating diabetes, heart failure, and hypermetabolic states. The purpose of this study was to determine the pharmacokinetic profile of oral thiamine hydrochloride at 100 mg, 500 mg and 1500 mg doses in healthy subjects. Methods: This was a randomized, double-blind, single-dose, 4-way crossover study. Pharmacokinetic measures were calculated. Results: The AUC010hrAUC_{0-10 hr} and CmaxC_{max} values increased nonlinearly between 100 mg and 1500 mg. The slope of the AUC010hrAUC_{0-10 hr} vs dose, as well as the CmaxC_{max} vs dose, plots are steepest at the lowest thiamine doses. Conclusion: Our study demonstrates that high blood levels of thiamine can be achieved rapidly with oral thiamine hydrochloride. Thiamine is absorbed by both an active and nonsaturable passive process

    Serum Levels of Advanced Glycation Endproducts and Other Markers of Protein Damage in Early Diabetic Nephropathy in Type 1 Diabetes

    Get PDF
    Objective To determine the role of markers of plasma protein damage by glycation, oxidation and nitration in microalbuminuria onset or subsequent decline of glomerular filtration rate (termed “early GFR decline”) in patients with type 1 diabetes. Methods From the 1st Joslin Kidney Study, we selected 30 patients with longstanding normoalbuminuria and 55 patients with new onset microalbuminuria. Patients with microalbuminuria had 8–12 years follow-up during which 33 had stable GFR and 22 early GFR decline. Mean baseline GFRCYSTATIN C was similar between the three groups. Glycation, oxidation and nitration markers were measured in protein and ultrafiltrate at baseline by liquid chromatography-tandem mass spectrometry using the most reliable methods currently available. Results Though none were significantly different between patients with microalbuminuria with stable or early GFR decline, levels of 6 protein damage adduct residues of plasma protein and 4 related free adducts of plasma ultrafiltrate were significantly different in patients with microalbuminuria compared to normoalbuminuria controls. Three protein damage adduct residues were decreased and 3 increased in microalbuminuria while 3 free adducts were decreased and one increased in microalbuminuria. The most profound differences were of N-formylkynurenine (NFK) protein adduct residue and Nω-carboxymethylarginine (CMA) free adduct in which levels were markedly lower in microalbuminuria (P<0.001 for both). Conclusions Complex processes influence levels of plasma protein damage and related proteolysis product free adducts in type 1 diabetes and microalbuminuria. The effects observed point to the possibility that patients who have efficient mechanisms of disposal of damaged proteins might be at an increased risk of developing microalbuminuria but not early renal function decline. The findings support the concept that the mechanisms responsible for microalbuminuria may differ from the mechanisms involved in the initiation of early renal function decline

    Early- and advanced non-enzymatic glycation in diabetic vascular complications: the search for therapeutics

    Get PDF
    Cardiovascular disease is a common complication of diabetes and the leading cause of death among people with diabetes. Because of the huge premature morbidity and mortality associated with diabetes, prevention of vascular complications is a key issue. Although the exact mechanism by which vascular damage occurs in diabetes in not fully understood, numerous studies support the hypothesis of a causal relationship of non-enzymatic glycation with vascular complications. In this review, data which point to an important role of Amadori-modified glycated proteins and advanced glycation endproducts in vascular disease are surveyed. Because of the potential role of early- and advanced non-enzymatic glycation in vascular complications, we also described recent developments of pharmacological inhibitors that inhibit the formation of these glycated products or the biological consequences of glycation and thereby retard the development of vascular complications in diabetes

    Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation

    Get PDF
    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation
    corecore