
A Generic Algorithm for Checking
Exhaustivity of Pattern Matching (Short Paper)

Fengyun Liu
EPFL, Switzerland
fengyun.liu@epfl.ch

Abstract
Algebraic data types and pattern matching are key features
of functional programming languages. Exhaustivity check-
ing of pattern matching is a safety belt that defends against
unmatched exceptions at runtime and boosts type safety.
However, the presence of language features like inheritance,
typecase, traits, GADTs, path-dependent types and union
types makes the checking difficult and the algorithm com-
plex. In this paper we propose a generic algorithm that de-
couples the checking algorithm from specific type theor-
ies. The decoupling makes the algorithm simple and enables
easy customization for specific type systems.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Patterns

Keywords pattern matching, exhaustivity check, Scala

1. Introduction
One distinctive feature of functional programming lan-
guages, like Scala, OCaml, Haskell, is the availability of
ADTs (algebraic data types) and the ability to deconstruct
them using pattern matching. When a pattern match gets
complex, it’s easy to forget some cases. Such unhandled
cases cause runtime exceptions and degrade type safety. To
uphold type safety, most compilers do some exhaustivity
check to issue warnings about missing cases. For example,
the Scala compiler warns that the case Some(Nil) is not
handled in the following code:

(Some(Nil): Option[List[Int]]) match {
case Some(x::xs) => true
case None => false

}

Exhaustivity checking is a solved problem for ADTs [8].
However, in a language like Scala which is enriched with
features like inheritance, typecase [1], traits [9], GADTs
[4, 12], path-dependent types [2] and union types [3], ex-
haustivity checking becomes complex. Without good ab-
straction, each feature complicates the algorithm a little bit
and the combination of features results in a monolithic al-
gorithm that’s impossible to maintain.

In this paper we introduce an abstraction called space
which enables us to decouple knowledge about the underly-
ing type system from the algorithm. The decoupling results
in a simple and generic algorithm for exhaustivity check-
ing that is easily customizable to specific type systems. Con-
cretely, our contributions are as follows:

• We put forward a generic exhaustivity checking al-
gorithm that can be easily extended to support concrete
type systems without making changes to the core al-
gorithm.

• We extend the generic algorithm for exhaustivity check-
ing in Scala. The new algorithm is much simpler than
the implementation in the standard Scala compiler, and
it fixes 13 open issues about exhaustivity checking in
Scala’s issue tracker.

2. Algorithm
2.1 Idea
The basic idea of the algorithm is that types and patterns can
be thought as spaces of values. The space of a type is the
set of values that inhabit the type. The space of a pattern is
the set of values that can be covered by the pattern. More
concretely, space is inductively defined as follows:

1. O is an empty space.
2. T (T) is a type space of type T .
3. If s1, s2, · · · are spaces, then s1 | s2 | ... is a union space.
4. If s1, s2, · · · , sn are spaces and K is a constructor type,

then K (K, s1, s2, ..., sn) is a constructor space.

A constructor type refers the type of all values created
using a constructor in an ADT definition. In Scala, all cases
classes are constructor types. In Haskell or OCaml, program-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SCALA’16, October 30–31, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4648-1/16/10...$15.00

http://dx.doi.org/10.1145/2998392.2998401

61

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148027953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

mers cannot explicitly use the constructor names of ADTs as
types, but inside the checking algorithm we can treat them as
types.

Now we can reformulate the problem of exhaustivity
checking in terms of spaces:

Is the space T (T), where T is the type of the value to
be matched against, a subspace of the union of spaces
covered by all the pattern clauses?

2.2 Design
With the formulation above, an exhaustivity checking al-
gorithm only needs two definitions:

• s1 � s2: whether space s1 is a subspace of s2
• P(p): projects a pattern p to a space.

The generic algorithm leaves the function P to concrete
implementations, as it depends on knowledge of the concrete
type system. Generally, the following projection rules are
observed:

P(x : T) = T (T)
P(p1 | p2 | · · ·) = P(p1) |P(p2) | · · ·
P(K(p1, p2, · · ·)) = K (K,P(p1),P(p2), · · ·)

To define the subspace relation �, the generic algorithm
makes minimal assumptions about the type system:

• A constructor type cannot be a super type of other types.
• If every value that inhabits the type T1 also inhabits the

type T2, then T1 is a subtype of T2.

The generic algorithm depends on the following defini-
tions from concrete implementations:

• T1 <: T2: whether T1 is a subtype of T2

• sig(K): get parameter types of the constructor type K
• D?(T): whether the type T is decomposable
• D(T): decompose the type T into a union of subspaces

The predicates and functions in the list above are all
related to specific features of the type system. Deferring
these definitions to the concrete implementation results in
an elegant decoupling of the generic algorithm from the
concrete type system.

The items in the list are self-evident except D?(T) and
D(T), which deserve some explanation. The whole idea of
pattern matching depends on the assumption that the val-
ues of a type can be completely (not necessarily disjointly)
partitioned as values of some more specific types. Put it in
the language of spaces, pattern matching assumes that the
spaces of some types can be completely decomposed into
sub-spaces. For example, an ADT can be decomposed to the
spaces of its constructor types, an union type S | T can be
decomposed to the space of S and the space of T .

a	 b
1 O 	 x = O
2 x	 O = x
3 T (T1)	 T (T2) = O if T1 <: T2

4 T (K)	K (K, s1, · · ·) =
K (K,map T sig(K)) 	
K (K, s1, · · ·)

5 (s1 | s2 | · · ·)	 x = s1 	 x | s2 	 x | · · ·
6 x	 (s1 | s2 | · · ·) = x	 s1 	 s2 	 · · ·
7 K (K, s1, · · ·)	 T (T) = O if K <: T

8
K (K, s1, · · ·) 	
K (K,w1, · · ·)

=



(1)O if ∀i.si � wi

(2)K (K, s1, · · ·)
if ∃i.si u wi

.
= O

(3)(K (K, s1 	 w1, s2, · · ·) |
K (K, s1, s2 	 w2, · · ·) |
· · ·) otherwise

9 T (T)	 x = D(T)	 x if D?(T)
10 x	 T (T) = x	 D(T) if D?(T)
11 a	 b = a otherwise

Figure 1. Definition of space subtraction

a u b
1 O u x = O
2 x u O = O
3 T (T1) u T (T2) = T (T1) if T1 <: T2

4 T (T1) u T (T2) = T (T2) if T2 <: T1

5 T (T) uK (K, s1, · · ·) = K (K, s1, · · ·) if K <: T
6 (s1 | s2 | · · ·) u x = s1 u x | s2 u x | · · ·
7 x u (s1 | s2 | · · ·) = x u s1 | x u s2 | · · ·
8 K (K, s1, · · ·) u T (T) = K (K, s1, · · ·) if K <: T

9
K (K, s1, · · ·) u
K (K,w1, · · ·)

= K (K, s1 u w1, s2 u w2, · · ·)

10 T (T) u x = D(T) u x if D?(T)
11 x u T (T) = x u D(T) if D?(T)
12 a u b = O otherwise

Figure 2. Definition of space intersection

2.3 Algorithm
Given the symbols introduced in the previous section, the
problem of exhaustivity checking can be reformulated as
follows:

Patterns p1, p2, · · · are exhaustive for type T iff T (T) �
P(p1) |P(p2) | · · ·

The generic algorithm only needs to define the subspace
relation (�), which can be defined in terms of space subtrac-
tion ().

DEFINITION (Subspace). s1 � s2 if and only if s1	s2
.
= O

The equality relation (.=) used in the definition implies
there should be a theory about equality between spaces. We
don’t bother to define a general equality relation here, as it’s
only used to compare with an empty space, for which the
following simple rules suffice:

O
.
= O

T (T)
.
= O if D?(T) ∧D(T)

.
= O

s1 | s2 | · · ·
.
= O if ∀i.si

.
= O

K (K, s1, s2, · · ·)
.
= O if ∃i.si

.
= O

62

The definition of space subtraction is shown in Figure 1.
It depends on space intersection (u), the latter is defined
in Figure 2. Most of the definitions are straight-forward.
The most complex one is the subtraction of two constructor
spaces (rows 8 in Figure 1). Given two constructor spaces,
a = K (K, s1, · · ·) and b = K (K,w1, · · ·):

1. If for all i, we have si � wi, then each value in a is also
a value in b, thus a	 b = O .

2. In contrast, if there exists i such that siuwi
.
= O , then it’s

impossible for any value of a to be in b, thus a	 b = a.

3. What cases are not matched in the following code?

val x, y: Option[Int] = ...

(x, y) match {
case (None, Some(_)) => true

}

The algorithm will warn that (Option, None) and (Some(_),
Option) are not covered. It’s easy to see that (Some(_),
None) is included in both of the counterexamples. How-
ever, as this duplication doesn’t harm correctness and it’s
the simplest rule we can arrive at, we’re happy to keep it.

2.4 Discussion
Theoretically, it is a little surprising that � is defined in
terms of 	. Is it possible to define � independently? We
tried but failed. The problem we encounter is how to define
the following case: K (K,w1, · · · , wm) � s1 | · · · | sn.

In the case above, the constructor space might be covered
jointly by multiple components of the union space. We can
either resort to subtraction as we do in this paper, or try to
fuse all constructor spaces si of the shape K (K, _, _, · · ·)
into a single constructor space. Then the problem reduces
to the case of comparing two single spaces, which can be
handled easily.

However, the latter approach is not always possible.
For example, there’s no simple way to fuse (Some(_),
Some(_)) and (None, None). The naive approach to fuse
it as (Option, Option) is obviously incorrect.

Another argument for defining � in terms of 	 is that
subtraction is needed anyway in order to produce friendly
counterexamples in the warning message.

The generic algorithm makes the assumption that a con-
structor type cannot be a super type of any other types.
Without this assumption, it is unclear how to define follow-
ing cases correctly:

T (T)	K (K, s1, · · ·) = ? if T <: K
K (K, s1, · · ·)	T (T) = ? if T <: K
T (T) uK (K, s1, · · ·) = ? if T <: K
K (K, s1, · · ·) uT (T) = ? if T <: K

Luckily, in most programming languages this is not a
problem. In Scala, case classes can be inherited. However,
it’s an anti-pattern and rarely used in practice.

100 200 300 400 500
0

0.5

1

1.5

2

·108 Series I

dotty
scala

4 6 8 10

107

108

109

1010

1011

1012

1013

Series S

dotty
scala

1 2 3 4 5 6

106

108

1010

1012

Series V

dotty
scala

0 5 10 15 20

106

107

108

109

1010

Series T

dotty
scala

Figure 3. Performance comparison (time unit: ns)

3. Evaluation
3.1 Correctness
We have not formally proved correctness of the algorithm.
However, we tested the implementation on Dotty. The new
algorithm passes all tests migrated from the Scala compiler
and fixes 13 open issues in Scala’s issue tracker1.

In principle, these issues could also be fixed in the current
Scala compiler. However, the complexity of the implementa-
tion incurs higher cost to fix them, which explains that some
issues stayed for a long time on the issue tracker.

3.2 Maintainability
The new algorithm takes 442LOC. The algorithm in the cur-
rent Scala compiler amounts to 1369LOC. We have extended
the approach to introduce a concept called point in order to
support constants, Java enumerations and stable identifiers
in patterns. The extension is straight-forward and trivial to
implement.

3.3 Performance
The general problem of pattern matching is NP-Complete
[10]. Thus we expect the worst-case performance of the
generic algorithm to be exponential. This is caused by the
subtraction of two constructor spaces which could result in
a proliferation of spaces. However, in practice the algorithm
performs well without performance issues.

We compared the performance of the new algorithm and
the algorithm in current Scala compiler based on series I, S,
V and T from Maranget’s paper [8]. Figure 3 shows that the
new algorithm performs better in series I, S and V. Series
T suggests potential optimizations to the new algorithm,

1 https://github.com/lampepfl/dotty/pull/1364

63

which needs further investigation. The benchmarks are easy
to reproduce following the instructions here2.

3.4 Limitations
Guards in pattern clauses pose a theoretical difficulty, thus
are not handled by the algorithm. For example, in the fol-
lowing example the arithmetic in the guard is too complex
for the compiler:

(x, y) match {
case (a, b) if a*a + 2*a*b + b*b >= 0 => true

}

It’s no surprise that no existing compilers can prop-
erly handle guards, as the guard can be any possible code
that may be undecidable. Scala supports a language feature
called extractors [5]. Theoretically, they are as complex as
guards, thus cannot be handled properly.

The algorithm assumes the type of each constructor para-
meter is independent, thus it cannot handle type constraints
that relate different constructor parameters. This can be il-
lustrated by the following example:

sealed trait Expr[T]
case class IntExpr(x: Int) extends Expr[Int]
case class BooleanExpr(b: Boolean) extends

Expr[Boolean]

def foo[T](x: Expr[T], y: Expr[T]) = (x, y)
match {

case (IntExpr(_), IntExpr(_)) => true
case (BooleanExpr(_), BooleanExpr(_)) => false

}

It’s obvious that the pattern match in the above is exhaust-
ive, but the algorithm will complain that it is non-exhaustive.

Note that the algorithm implemented in current Scala
compiler also faces the same limitations.

4. Related Work
Maranget proposes an elegant algorithm for checking the ex-
haustivity of ADTs [8], which inspired the algorithm in this
paper. The two algorithms are the same in spirit, though
Maranget’s algorithm is presented with pattern matrices
based on the concept of useful clause. Maranget’s algorithm
assumes a type system with only ADTs, thus it may perform
an optimization which is unavailable to us. Our algorithm
abstracts the type system away, thus is more generic.

In OCaml, the GADT implementation extended the ori-
ginal checking algorithm by eliminating the ill-typed un-
covered cases [6]. This is also a possible approach to im-
prove our algorithm to better handle GADTs in the future.

Xi takes a two-step approach for eliminating dead code
for GADT pattern matching [11]: first add all the missing
patterns using simple pattern checking techniques, and then

2 https://github.com/liufengyun/bench-patmat

remove redundant clauses by checking when typing con-
straints are un-satisfiable.

Karachalias introduces a new algorithm for checking
GADTs based on type constraint solving [7]. This algorithm
depends on a type constraint solver as an oracle.

5. Conclusion
In this paper we presented a generic algorithm for checking
exhaustivity of pattern matching. The decoupling of know-
ledge about the type system from the algorithm makes the
algorithm simple and extensible for potentially any type sys-
tems.

Acknowledgments
We thank Dmitry Petrashko and Guillaume Martres for help-
ing us implement the algorithm in Dotty. We thank Sandro
Stucki, Nada Amin and Nicolas Stucki for their helpful feed-
back on the draft of this paper.

References
[1] M. Abadi, L. Cardelli, B. C. Pierce, D. Rémy, and R. Taylor.

Dynamic typing in polymorphic languages. Journal of func-
tional programming, 5(1):111–130, 1995.

[2] N. Amin, S. Grütter, M. Odersky, T. Rompf, and S. Stucki.
The essence of dependent object types. In A List of Successes
That Can Change the World, pages 249–272. Springer, 2016.

[3] F. Barbanera, M. Dezaniciancaglini, and U. Deliguoro. Inter-
section and union types: Syntax and semantics. Information
and Computation, 119(2):202–230, 1995.

[4] J. Cheney and R. Hinze. First-class phantom types. Technical
report, Cornell University, 2003.

[5] B. Emir, M. Odersky, and J. Williams. Matching objects
with patterns. In European Conference on Object-Oriented
Programming, pages 273–298. Springer, 2007.

[6] J. Garrigue and J. Normand. Adding GADTs to ocaml: The
direct approach. In Workshop on ML, 2011.

[7] G. Karachalias, T. Schrijvers, D. Vytiniotis, and S. P. Jones.
GADTs meet their match. In International Conference on
Functional Programming, ICFP, volume 15, 2015.

[8] L. Maranget. Warnings for pattern matching. Journal of
Functional Programming, 17(03):387–421, 2007.

[9] M. Odersky and M. Zenger. Scalable component abstractions.
In ACM Sigplan Notices, volume 40, pages 41–57. ACM,
2005.

[10] R. Sekar, R. Ramesh, and I. Ramakrishnan. Adaptive pattern
matching. In International Colloquium on Automata, Lan-
guages, and Programming, pages 247–260. Springer, 1992.

[11] H. Xi. Dependently typed pattern matching. Journal of
universal computer science, 9(8):851–872, 2003.

[12] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype
constructors. In ACM SIGPLAN Notices, volume 38, pages
224–235. ACM, 2003.

64

	Introduction
	Algorithm
	Idea
	Design
	Algorithm
	Discussion

	Evaluation
	Correctness
	Maintainability
	Performance
	Limitations

	Related Work
	Conclusion

