15 research outputs found

    Isolation and Primary Culture of Murine Podocytes with Proven Origin

    No full text
    Genetic studies on hereditary kidney diseases and in vivo experimental model studies have revealed a critical role for the podocyte in glomerular function and disease. Primary podocyte cultures as well as immortalized podocyte cell lines have been used extensively to study podocyte function. Although, primary cells often more closely resemble the in vivo cells, they may have only a finite replicative life span before they reach senescence. Therefore, the success of studies using primary cell cultures depends on standardized isolation and culture protocols that allow reproducible generation of stable primary cultures.This chapter describes the isolation of primary podocytes with a proven origin using the novel technology of cell-specific genetic tagging. Podocytes are isolated from glomeruli from a podocyte-specific transgenic reporter mouse. The podocyte-specific reporter gene beta-galactosidase is used to identify and specifically isolate the labeled podocytes from other glomerular cells by FACS

    Investigations of Glucocorticoid Action in GN

    Get PDF
    Item does not contain fulltextFor several decades, glucocorticoids have been used empirically to treat rapid progressive GN. It is commonly assumed that glucocorticoids act primarily by dampening the immune response, but the mechanisms remain incompletely understood. In this study, we inactivated the glucocorticoid receptor (GR) specifically in kidney epithelial cells using Pax8-Cre/GRfl/fl mice. Pax8-Cre/GRfl/fl mice did not exhibit an overt spontaneous phenotype. In mice treated with nephrotoxic serum to induce crescentic nephritis (rapidly progressive GN), this genetic inactivation of the GR in kidney epithelial cells exerted renal benefits, including inhibition of albuminuria and cellular crescent formation, similar to the renal benefits observed with high-dose prednisolone in control mice. However, genetic inactivation of the GR in kidney epithelial cells did not induce the immunosuppressive effects observed with prednisolone. In vitro, prednisolone and the pharmacologic GR antagonist mifepristone each acted directly on primary cultures of parietal epithelial cells, inhibiting cellular outgrowth and proliferation. In wild-type mice, pharmacologic treatment with the GR antagonist mifepristone also attenuated disease as effectively as high-dose prednisolone without the systemic immunosuppressive effects. Collectively, these data show that glucocorticoids act directly on activated glomerular parietal epithelial cells in crescentic nephritis. Furthermore, we identified a novel therapeutic approach in crescentic nephritis, that of glucocorticoid antagonism, which was at least as effective as high-dose prednisolone with potentially fewer adverse effects

    Gratitude and leave-taking: Editorial reflections, 2003-2017

    No full text
    In this article we reflect on our time as editors of Psychoanalysis, Culture & Society. The article reviews some of the journal’s major contributions to psychoanalytic understanding of social and political problems; considers whether or not we are entering a post-neoliberal world; and discusses some of the challenges faced by PCS given the marginal status of psychoanalysis in the wider culture, the journal's emphasis on interdisciplinarity, and its commitment to providing a space for multiple psychoanalytic voices. The article’s later sections consider some of the areas that remain underdeveloped in the journal’s coverage. In particular, they explore the challenging task of specifying whether or not social entities, as opposed to individuals, can be said to have properties that are unconscious in the psychoanalytic sense

    Decoding myofibroblast origins in human kidney fibrosis

    No full text
    Kidney fibrosis is the hallmark of chronic kidney disease progression; however, at present no antifibrotic therapies exist1–3. The origin, functional heterogeneity and regulation of scar-forming cells that occur during human kidney fibrosis remain poorly understood1,2,4. Here, using single-cell RNA sequencing, we profiled the transcriptomes of cells from the proximal and non-proximal tubules of healthy and fibrotic human kidneys to map the entire human kidney. This analysis enabled us to map all matrix-producing cells at high resolution, and to identify distinct subpopulations of pericytes and fibroblasts as the main cellular sources of scar-forming myofibroblasts during human kidney fibrosis. We used genetic fate-tracing, time-course single-cell RNA sequencing and ATAC–seq (assay for transposase-accessible chromatin using sequencing) experiments in mice, and spatial transcriptomics in human kidney fibrosis, to shed light on the cellular origins and differentiation of human kidney myofibroblasts and their precursors at high resolution. Finally, we used this strategy to detect potential therapeutic targets, and identified NKD2 as a myofibroblast-specific target in human kidney fibrosis

    The generation of kidney organoids by differentiation of human pluripotent cells to ureteric bud progenitor-like cells

    No full text
    International audienceThis protocol presents recently developed methodologies for the differentiation of human pluripotent stem cells (hPSCs) into ureteric bud (UB) progenitor-like cells. Differentiation of human PSCs to UB progenitor-like cells allows for the generation of chimeric kidney cultures in which the human cells can self-assemble into chimeric 3D structures in combination with embryonic mouse kidney cells over a period of 18 d. UB progenitor-like cells are generated by a two-step process that combines in vitro commitment of human PSCs, whether embryonic stem cells (ESCs) or induced PSCs (iPSCs), under chemically defined culture conditions, with ex vivo cultures for the induction of 3D organogenesis. The models described here provide new opportunities for investigating human kidney development, modeling disease, evaluating regenerative medicine strategies, as well as for toxicology studies
    corecore