10 research outputs found

    Effect of Electrolysis on Activated Sludge during the Hydrolysis and Acidogenesis Stages in the Anaerobic Digestion of Poultry Manure

    Get PDF
    This paper focuses on the study of the effect of electrolysis on activated sludge in amicrobial electrolysis cell (MEC) under the anaerobic digestion of poultry manure. This study was conducted using a bioreactor design with and without electrodes (conventional condition). Measurements of pH, redox potential (ORP), and total dissolved solids were carried out, as was the microscopy of activated sludge during treatment and gasometry. There was an increase in the yields of CH4 and CO2 compared to conventional conditions. Thus, on the 14th day, there was an increase in the CH4 yield to 35.1% compared with the conventional conditions - 31.6% - as well as in the CO2 yield to 53.5% compared with the cell without electrodes - 37.7%. Visually, the microscopy of anaerobic activated sludge showed changes in the aggregation process itself, with the formation of cells of clusters of microorganism colonies with branches of a delineated shape. ORP fluctuations were related to the process of the dissociation into ions during the passage of an electric current through the electrodes, and were observed before and after the inclusion of a current into the system. A model of the effect of electrolysis during anaerobic digestion was developed, taking into account the influencing factors on the condition of the activated sludge

    Intensification of Waste Valorization Techniques for Biogas Production on the Example of Clarias gariepinus Droppings

    Get PDF
    This study aims to evaluate the process of biogas production from the droppings of Clarias gariepinus under intensification of methanogenesis using electrolysis pretreatment and electrofermentation in comparison with the addition of stimulating substances (humates and zeolites). For the realization of a series of experiments, laboratory installations of electrolysis and electro fermentation were developed. The following parameters were monitored: biogas composition, chemical oxygen demand, redox potential, hydrogen potential, nitrates, ammonia–ammonium, and nitrites. A taxonomic classification and review of the metabolic pathways were performed using the KEGG, MetaCyc, and EzTaxon databases. The stimulation of biomethanogenesis in the utilization of catfish droppings by the introduction of additional electron donors—exogenous hydrogen (electro fermentation)—was confirmed. The electro-fermentation process released 4.3 times more methane compared to conventional conditions and stimulant additives and released 1.7 times more with electrolysis pretreatment. The main metabolic pathways of electron acceptor recruitment using bioinformatic databases are highlighted, and models of CO2 transformation involving exogenous hydrogen along the chain of metabolic reactions of methanogenesis are generated. The summary model of metabolic pathways of methanogenesis are also proposed. Based on the results of the present and previous studies, two technological solutions are proposed to implement the process of anaerobic treatment intensification of excreta of the clariid catfish. Additional studies should include the optimization of the operation mode of electro-fermentation and electrolysis pretreatment of the substrate during the aquacultivation process

    Comparison of sorption efficiency of natural and MnO2 coated zeolite for copper removal from model solutions

    Get PDF
    Removal of heavy metals from the environment is important for living beings. The present work investigates the applicability of the natural and MnO2 - coated zeolite as sorbent for the removal of copper from synthetic solutions. Batch experiments were carried out to identify the influence of initial pH and concentration in the process of adsorption. A maximum removal efficiency of Cu(II) was observed in 10 mg/L for natural (95.6%) and modified (96.4%) zeolite, where the values was almost identical, but at concentration of 500 mg/L was the removal efficiency of modified zeolite three times higher. Based on the correlation factors R2, the Langmuir isotherms better describe the decontamination process than Freundlich. The optimum pH value was set at 5.0

    Effect of Electrolysis on Activated Sludge during the Hydrolysis and Acidogenesis Stages in the Anaerobic Digestion of Poultry Manure

    Get PDF
    This paper focuses on the study of the effect of electrolysis on activated sludge in a microbial electrolysis cell (MEC) under the anaerobic digestion of poultry manure. This study was conducted using a bioreactor design with and without electrodes (conventional condition). Measurements of pH, redox potential (ORP), and total dissolved solids were carried out, as was the microscopy of activated sludge during treatment and gasometry. There was an increase in the yields of CH4 and CO2 compared to conventional conditions. Thus, on the 14th day, there was an increase in the CH4 yield to 35.1% compared with the conventional conditions—31.6%—as well as in the CO2 yield to 53.5% compared with the cell without electrodes—37.7%. Visually, the microscopy of anaerobic activated sludge showed changes in the aggregation process itself, with the formation of cells of clusters of microorganism colonies with branches of a delineated shape. ORP fluctuations were related to the process of the dissociation into ions during the passage of an electric current through the electrodes, and were observed before and after the inclusion of a current into the system. A model of the effect of electrolysis during anaerobic digestion was developed, taking into account the influencing factors on the condition of the activated sludge
    corecore