395 research outputs found
The Solar Neighborhood. XXXIX. Parallax Results from the CTIOPI and NOFS Programs: 50 New Members of the 25 Parsec White Dwarf Sample
We present 114 trigonometric parallaxes for 107 nearby white dwarf (WD)
systems from both the Cerro Tololo Inter-American Observatory Parallax
Investigation (CTIOPI) and the U. S. Naval Observatory Flagstaff Station (NOFS)
parallax programs. Of these, 76 parallaxes for 69 systems were measured by the
CTIOPI program and 38 parallaxes for as many systems were measured by the NOFS
program. A total of 50 systems are confirmed to be within the 25 pc horizon of
interest. Coupled with a spectroscopic confirmation of a common proper motion
companion to a Hipparcos star within 25 pc as well as confirmation parallax
determinations for two WD systems included in the recently released Tycho Gaia
Astrometric Solution (TGAS) catalog, we add 53 new systems to the 25 pc WD
sample a 42% increase. Our sample presented here includes four strong
candidate halo systems, a new metal-rich DAZ WD, a confirmation of a recently
discovered nearby short-period (P = 2.85 hr) double degenerate, a WD with a new
astrometric pertubation (long period, unconstrained with our data), and a new
triple system where the WD companion main-sequence star has an astrometric
perturbation (P 1.6 yr).Comment: 32 pages, 12 figures. Figure 4 in the manuscript is a representative
set of plots - plots for all WDs presented here are available
(allfits_photo.pdf, allfits_photo_DQ.pdf, and allfits_photo_DZ.pdf). Accepted
for publication in The Astronomical Journa
Discovery of a Brown Dwarf Companion to Gliese 570ABC: A 2MASS T Dwarf Significantly Cooler than Gliese 229B
We report the discovery of a widely separated (258\farcs3\pm0\farcs4) T
dwarf companion to the Gl 570ABC system. This new component, Gl 570D, was
initially identified from the Two Micron All Sky Survey (2MASS). Its
near-infrared spectrum shows the 1.6 and 2.2 \micron CH absorption bands
characteristic of T dwarfs, while its common proper motion with the Gl 570ABC
system confirms companionship. Gl 570D (M = 16.470.07) is nearly a
full magnitude dimmer than the only other known T dwarf companion, Gl 229B, and
estimates of L = (2.80.3)x10 L_{\sun} and T = 75050
K make it significantly cooler and less luminous than any other known brown
dwarf companion. Using evolutionary models by Burrows et al. and an adopted age
of 2-10 Gyr, we derive a mass estimate of 5020 M for this object.Comment: 13 pages, 2 figures, 2 tables, accepted by ApJ
The Spectra of T Dwarfs I: Near-Infrared Data and Spectral Classification
We present near-infrared spectra for a sample of T dwarfs, including eleven
new discoveries made using the Two Micron All Sky Survey. These objects are
distinguished from warmer (L-type) brown dwarfs by the presence of methane
absorption bands in the 1--2.5 \micron spectral region. A first attempt at a
near-infrared classification scheme for T dwarfs is made, based on the
strengths of CH and HO bands and the shapes of the 1.25, 1.6, and 2.1
\micron flux peaks. Subtypes T1 V through T8 V are defined, and spectral
indices useful for classification are presented. The subclasses appear to
follow a decreasing T scale, based on the evolution of CH and
HO bands and the properties of L and T dwarfs with known distances.
However, we speculate that this scale is not linear with spectral type for cool
dwarfs, due to the settling of dust layers below the photosphere and subsequent
rapid evolution of spectral morphology around T 1300--1500 K.
Similarities in near-infrared colors and continuity of spectral features
suggest that the gap between the latest L dwarfs and earliest T dwarfs has been
nearly bridged. This argument is strengthened by the possible role of CH as
a minor absorber shaping the K-band spectra of the latest L dwarfs. Finally, we
discuss one peculiar T dwarf, 2MASS 0937+2931, which has very blue
near-infrared colors (J-K = 0.24) due to suppression of the 2.1
\micron peak. The feature is likely caused by enhanced collision-induced
H absorption in a high pressure or low metallicity photosphere.Comment: 74 pages including 26 figures, accepted by ApJ v563 December 2001;
full paper including all of Table 3 may be downloaded from
http://www.gps.caltech.edu/~pa/adam/classification ;also see submission
010844
Overview of the Far Ultraviolet Spectroscopic Explorer Mission
The Far Ultraviolet Spectroscopic Explorer satellite observes light in the
far-ultraviolet spectral region, 905 - 1187 A with high spectral resolution.
The instrument consists of four coaligned prime-focus telescopes and Rowland
spectrographs with microchannel plate detectors. Two of the telescope channels
use Al:LiF coatings for optimum reflectivity from approximately 1000 to 1187 A
and the other two use SiC coatings for optimized throughput between 905 and
1105 A. The gratings are holographically ruled to largely correct for
astigmatism and to minimize scattered light. The microchannel plate detectors
have KBr photocathodes and use photon counting to achieve good quantum
efficiency with low background signal. The sensitivity is sufficient to examine
reddened lines of sight within the Milky Way as well as active galactic nuclei
and QSOs for absorption line studies of both Milky Way and extra-galactic gas
clouds. This spectral region contains a number of key scientific diagnostics,
including O VI, H I, D I and the strong electronic transitions of H2 and HD.Comment: To appear in FUSE special issue of the Astrophysical Journal Letters.
6 pages + 4 figure
Nuclear DNA from two early Neandertals reveals 80,000 years of genetic continuity in Europe
Little is known about the population history of Neandertals over the hundreds of thousands of years of their existence. We retrieved nuclear genomic sequences from two Neandertals, one from Hohlenstein-Stadel Cave in Germany and the other from Scladina Cave in Belgium, who lived around 120,000 years ago. Despite the deeply divergent mitochondrial lineage present in the former individual, both Neandertals are genetically closer to later Neandertals from Europe than to a roughly contemporaneous individual from Siberia. That the Hohlenstein-Stadel and Scladina individuals lived around the time of their most recent common ancestor with later Neandertals suggests that all later Neandertals trace at least part of their ancestry back to these early European Neandertals
Brown Dwarf Companions to G-type Stars. I: Gliese 417B and Gliese 584C
We present astrometric and spectroscopic observations confirming that two
nearby G dwarf systems (Gliese 417 = BD+36 2162 and Gliese 584AB = eta CrB AB)
have a widely separated, L dwarf, substellar companion. Using age estimates of
the G dwarf primaries, we estimate masses for these L dwarfs from theoretical
evolutionary tracks. For the L4.5 dwarf Gl 417B we estimate an age of 0.08-0.3
Gyr and a mass of 0.035+/-0.015 M_sun. For the L8 dwarf Gl 584C we estimate an
age of 1.0-2.5 Gyr and a mass of 0.060+/-0.015 M_sun. This latter object also
shows evidence of spectrum variability, which may be due to surface
inhomogeneities rotating into and out of view. These new companions are also
compared to six other L dwarf and T dwarf companions previously recognized. For
the L dwarf companions, ages implied by the presence or absence of lithium are
consistent with ages inferred from the primaries alone.Comment: 37 pages plus 9 tables, accepted for the June 2001 issue of A
Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments
Ancient DNA recovered from Pleistocene sediments represents a rich resource for the study of past hominin and environmental diversity. However, little is known about how DNA is preserved in sediments and the extent to which it may be translocated between archaeological strata. Here, we investigate DNA preservation in 47 blocks of resin-impregnated archaeological sediment collected over the last four decades for micromorphological analyses at 13 prehistoric sites in Europe, Asia, Africa, and North America and show that such blocks can preserve DNA of hominins and other mammals. Extensive microsampling of sediment blocks from Denisova Cave in the Altai Mountains reveals that the taxonomic composition of mammalian DNA differs drastically at the millimeter-scale and that DNA is concentrated in small particles, especially in fragments of bone and feces (coprolites), suggesting that these are substantial sources of DNA in sediments. Three microsamples taken in close proximity in one of the blocks yielded Neanderthal DNA from at least two male individuals closely related to Denisova 5, a Neanderthal toe bone previously recovered from the same layer. Our work indicates that DNA can remain stably localized in sediments over time and provides a means of linking genetic information to the archaeological and ecological records on a microstratigraphic scale
Academic Performance and Behavioral Patterns
Identifying the factors that influence academic performance is an essential
part of educational research. Previous studies have documented the importance
of personality traits, class attendance, and social network structure. Because
most of these analyses were based on a single behavioral aspect and/or small
sample sizes, there is currently no quantification of the interplay of these
factors. Here, we study the academic performance among a cohort of 538
undergraduate students forming a single, densely connected social network. Our
work is based on data collected using smartphones, which the students used as
their primary phones for two years. The availability of multi-channel data from
a single population allows us to directly compare the explanatory power of
individual and social characteristics. We find that the most informative
indicators of performance are based on social ties and that network indicators
result in better model performance than individual characteristics (including
both personality and class attendance). We confirm earlier findings that class
attendance is the most important predictor among individual characteristics.
Finally, our results suggest the presence of strong homophily and/or peer
effects among university students
Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa
There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit
- …