116 research outputs found

    Parallel Quantum Annealing

    Full text link
    Quantum annealers of D-Wave Systems, Inc., offer an efficient way to compute high quality solutions of NP-hard problems. This is done by mapping a problem onto the physical qubits of the quantum chip, from which a solution is obtained after quantum annealing. However, since the connectivity of the physical qubits on the chip is limited, a minor embedding of the problem structure onto the chip is required. In this process, and especially for smaller problems, many qubits will stay unused. We propose a novel method, called parallel quantum annealing, to make better use of available qubits, wherein either the same or several independent problems are solved in the same annealing cycle of a quantum annealer, assuming enough physical qubits are available to embed more than one problem. Although the individual solution quality may be slightly decreased when solving several problems in parallel (as opposed to solving each problem separately), we demonstrate that our method may give dramatic speed-ups in terms of Time-to-Solution (TTS) for solving instances of the Maximum Clique problem when compared to solving each problem sequentially on the quantum annealer. Additionally, we show that solving a single Maximum Clique problem using parallel quantum annealing reduces the TTS significantly.Comment: 13 pages. v4: format improvement

    Posiform Planting: Generating QUBO Instances for Benchmarking

    Full text link
    We are interested in benchmarking both quantum annealing and classical algorithms for minimizing Quadratic Unconstrained Binary Optimization (QUBO) problems. Such problems are NP-hard in general, implying that the exact minima of randomly generated instances are hard to find and thus typically unknown. While brute forcing smaller instances is possible, such instances are typically not interesting due to being too easy for both quantum and classical algorithms. In this contribution, we propose a novel method, called posiform planting, for generating random QUBO instances of arbitrary size with known optimal solutions, and use those instances to benchmark the sampling quality of four D-Wave quantum annealers utilizing different interconnection structures (Chimera, Pegasus, and Zephyr hardware graphs) as well as the simulated annealing algorithm. Posiform planting differs from many existing methods in two key ways. It ensures the uniqueness of the planted optimal solution, thus avoiding groundstate degeneracy, and it enables the generation of QUBOs that are tailored to a given hardware connectivity structure, provided that the connectivity is not too sparse. Posiform planted QUBOs are a type of 2-SAT boolean satisfiability combinatorial optimization problems. Our experiments demonstrate the capability of the D-Wave quantum annealers to sample the optimal planted solution of combinatorial optimization problems with up to 56275627 qubits

    Reducing Binary Quadratic Forms for More Scalable Quantum Annealing

    Get PDF
    Recent advances in the development of commercial quantum annealers such as the D-Wave 2X allow solving NP-hard optimization problems that can be expressed as quadratic unconstrained binary programs. However, the relatively small number of available qubits (around 1000 for the D-Wave 2X quantum annealer) poses a severe limitation to the range of problems that can be solved. This paper explores the suitability of preprocessing methods for reducing the sizes of the input programs and thereby the number of qubits required for their solution on quantum computers. Such methods allow us to determine the value of certain variables that hold in either any optimal solution (called strong persistencies) or in at least one optimal solution (weak persistencies). We investigate preprocessing methods for two important NP-hard graph problems, the computation of a maximum clique and a maximum cut in a graph. We show that the identification of strong and weak persistencies for those two optimization problems is very instance-specific, but can lead to substantial reductions in the number of variables

    Posiform planting: generating QUBO instances for benchmarking

    Get PDF
    We are interested in benchmarking both quantum annealing and classical algorithms for minimizing quadratic unconstrained binary optimization (QUBO) problems. Such problems are NP-hard in general, implying that the exact minima of randomly generated instances are hard to find and thus typically unknown. While brute forcing smaller instances is possible, such instances are typically not interesting due to being too easy for both quantum and classical algorithms. In this contribution, we propose a novel method, called posiform planting, for generating random QUBO instances of arbitrary size with known optimal solutions, and use those instances to benchmark the sampling quality of four D-Wave quantum annealers utilizing different interconnection structures (Chimera, Pegasus, and Zephyr hardware graphs) and the simulated annealing algorithm. Posiform planting differs from many existing methods in two key ways. It ensures the uniqueness of the planted optimal solution, thus avoiding groundstate degeneracy, and it enables the generation of QUBOs that are tailored to a given hardware connectivity structure, provided that the connectivity is not too sparse. Posiform planted QUBOs are a type of 2-SAT boolean satisfiability combinatorial optimization problems. Our experiments demonstrate the capability of the D-Wave quantum annealers to sample the optimal planted solution of combinatorial optimization problems with up to 5, 627 qubits

    On-Line and Dynamic Shortest Paths Through Graph Decompositions

    Get PDF
    We describe algorithms for finding shortest paths and distances in a planar digraph which exploit the particular topology of the input graph. An important feature of our algorithms is that they can work in a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. For outerplanar digraphs, for instance, the data structures can be updated after any such change in only O(logn)O(\log n) time, where nn is the number of vertices of the digraph. We also describe the first parallel algorithms for solving the dynamic version of the shortest path problem. Our results can be extended to hold for digraphs of genus o(n)o(n)

    Optimizing embedding-related quantum annealing parameters for reducing hardware bias

    Full text link
    Quantum annealers have been designed to propose near-optimal solutions to NP-hard optimization problems. However, the accuracy of current annealers such as the ones of D-Wave Systems, Inc., is limited by environmental noise and hardware biases. One way to deal with these imperfections and to improve the quality of the annealing results is to apply a variety of pre-processing techniques such as spin reversal (SR), anneal offsets (AO), or chain weights (CW). Maximizing the effectiveness of these techniques involves performing optimizations over a large number of parameters, which would be too costly if needed to be done for each new problem instance. In this work, we show that the aforementioned parameter optimization can be done for an entire class of problems, given each instance uses a previously chosen fixed embedding. Specifically, in the training phase, we fix an embedding E of a complete graph onto the hardware of the annealer, and then run an optimization algorithm to tune the following set of parameter values: the set of bits to be flipped for SR, the specific qubit offsets for AO, and the distribution of chain weights, optimized over a set of training graphs randomly chosen from that class, where the graphs are embedded onto the hardware using E. In the testing phase, we estimate how well the parameters computed during the training phase work on a random selection of other graphs from that class. We investigate graph instances of varying densities for the Maximum Clique, Maximum Cut, and Graph Partitioning problems. Our results indicate that, compared to their default behavior, substantial improvements of the annealing results can be achieved by using the optimized parameters for SR, AO, and CW
    corecore