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Abstract

Recent advances in the development of commercial quantum annealers such as the D-Wave
2X allow solving NP-hard optimization problems that can be expressed as quadratic uncon-
strained binary programs. However, the relatively small number of available qubits (around
1000 for the D-Wave 2X quantum annealer) poses a severe limitation to the range of problems
that can be solved. This paper explores the suitability of preprocessing methods for reducing
the sizes of the input programs and thereby the number of qubits required for their solution on
quantum computers. Such methods allow us to determine the value of certain variables that hold
in either any optimal solution (called strong persistencies) or in at least one optimal solution
(weak persistencies). We investigate preprocessing methods for two important NP-hard graph
problems, the computation of a maximum clique and a maximum cut in a graph. We show that
the identification of strong and weak persistencies for those two optimization problems is very
instance-specific, but can lead to substantial reductions in the number of variables.

1 Introduction

1.1 Quantum annealing and D-Wave

The recent availability of the first commercial quantum computers of D-Wave Systems Inc. (D-
Wave, 2016) provides a novel tool to help finding, by a process known as quantum annealing, global
solutions to NP-hard problems that seem to be difficult to obtain classically (Djidjev et al., 2017).

As of 2017, the most recent version of the company’s quantum annealer, D-Wave 2000Q, is
capable of handling around 2000 qubits of quantum information. Each qubit consists of a super-
conducting loop on the D-Wave chip which simultaneously encodes a quantum superposition of −1
and +1 via two superimposed currents in both clockwise and counter-clockwise directions (Johnson
et al., 2011; Bunyk et al., 2014). Upon completion of the annealing process, the system turns
classical and each qubit takes a classical (binary) value that can be read and assigned to a variable.
D-Wave is designed to minimize an objective function consisting of a sum of linear and quadratic
binary contributions, given as

H = H(x1, . . . , xN ) =
∑
i∈V

aixi +
∑

(i,j)∈E

aijxixj , (1)

where ai, aij ∈ R and V = {1, . . . , N}, E = V × V for N ∈ N qubits (King et al., 2015). The
functional type (1) is called the Hamiltonian encoding the energy of a quantum system. In (1)
qubits are encoded by variables xi, E denotes the dependency structure between the qubits (the
set of interactions), and ai and aij encode physical characteristics of the qubits and the links
(called couplers) between them, respectively. During annealing, the quantum system tries to reach
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a configuration of minimal energy of H. A quadratic form of type (1) with xi ∈ {−1, 1} is called
an Ising model. By replacing xi in (1) with (xi + 1)/2, one gets a quadratic form of the same
type as (1), but with xi ∈ {0, 1}. The resulting problem is called a quadratic unconstrained binary
optimization (QUBO) problem. Any QUBO or Ising problem can be solved on D-Wave as long as
there are enough qubits and couplers between those qubits available on the D-Wave architecture
to represent the system (1).

1.2 Aim of this work

Although Djidjev et al. (2017) show that certain instances designed to fit the D-Wave qubit inter-
connection network can be solved magnitudes faster with D-Wave than with its classical analogues,
the limitation of only around 1000 qubits and about 3000 couplers available on D-Wave 2X (DW)
at Los Alamos National Laboratory poses a severe restriction. For most NP-hard optimization
problems, due to the density of the Hamiltonian H, the largest problems able to fit DW are of size
about only 45.

To mitigate the current size limitations of the D-Wave architecture, this work tries to explore the
usability of preprocessing methods allowing to determine the value of certain variables in a QUBO or
Ising problem. Fixing all such variables then results in a new Hamiltonian of reduced size, consisting
only of the unresolved variables. We investigate the usage of partitioning and roof duality methods
for two important NP-hard graph problems, the Maximum Clique and the Maximum Cut problem,
which have multiple applications including network analysis, bioinformatics, and computational
chemistry. Given an undirected graph G = (V,E), a clique is a subset S of the vertices forming a
complete subgraph, meaning that any two vertices of S are connected by an edge in G. The clique
size is the number of vertices in S, and the Maximum Clique problem is to find a clique in G with a
maximum number of vertices (Balas and Yu, 1986). A cut S of a graph G is the set of (cut) edges
between S and V \ S in G. The Maximum Cut problem is to find a maximum cut, which is a cut
of maximum size.

1.3 Previous work

In Boros and Hammer (2001), optimization methods for quadratic pseudo-boolean functions, which
are multi-linear polynomial functions of boolean variables, are considered. The authors analyze a
variety of techniques based on roof duality, introduced in Hammer et al. (1984), in order to deter-
mine partial assignments of values or relations between variables in such pseudo-boolean functions.
A comprehensive overview of efficient preprocessing techniques for QUBO optimization can be
found in Boros et al. (2006): Those techniques consists of methods based on first and second order
derivatives, roof duality and probing techniques resulting in lower bounds on the minimum energy
of a QUBO, the values in either any (strong persistencies) or at least one optimum (weak persis-
tencies), binary relations between variables in some or every optimum, as well as decomposition
techniques of the original problem into several smaller pairwise independent QUBO subproblems.

A more efficient implementation of the probing techniques of Boros et al. (2006), combined
with the aforementioned roof duality, is presented in Rother et al. (2007), with a special focus on
computer vision applications. The code for the methods investigated in Rother et al. (2007) are
made available for C++ in the Qpbo package of Kolmogorov (2014). Bindings of this package for
Python are available (package PyQpbo, which is part of the PyStruct package of Müller and Behnke
(2014)) and will be used in the experiments of this article.

The article is organized as follows. Section 2 gives a detailed overview of the optimization
methods used in this report. Moreover, details on the optimization problems for the two NP-hard
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graph problems we consider, Maximum Clique and Maximum Cut, are given. Section 3 focuses
on the Maximum Clique problem. We state its formulation as a QUBO, highlight the use of a
decomposition method based on graph partitioning methods into smaller subproblems, and present
experimental results for Qpbo. For this we employ several test graphs, both stand-alone and in
connection with the decomposition approach. Section 4 repeats the QUBO formulation and a Qpbo
experimental study for the Maximum Cut problem. We conclude with a discussion in Section 5.

In the rest of the paper, we denote a graph as G = (V,E), where V = {1, . . . , n} is a set of n
vertices and E is a set of undirected edges.

2 Background

We briefly overview the techniques used in Boros et al. (2006) and Rother et al. (2007) in order
to identify strong and weak persistencies. Given a QUBO instance, it is first represented as a
(quadratic) posiform

φ(x) =
∑
T⊆L

aT
∏
u∈T

u, (2)

where aT ≥ 0 for all T 6= ∅ and L is a set of literals over the n variables {1, . . . , n} and their
complements. It is shown in Boros et al. (2006) that any posiform (2) can be equivalently expressed
as a quadratic form

Φ(x) = a0 +
∑
u∈L

auu+
∑
u,v∈L

auvuv.

Moreover, Boros et al. (2006) shows that there is a one-to-one correspondence between posiforms
and implication networks, which are capacitated networks GΦ = (V,E) with n = |V | nodes and
non-negative capacities γuv on the edges connecting any two nodes u, v ∈ V , u 6= v, V = {1, . . . , n}.

The implication network GΦ has an important application in the computation of the roof dual,
which is a lower bound on the value of a quadratic posiform (Hammer et al., 1984). The roof dual
is computed with the help of a maximum flow through the implication network GΦ.

More importantly for our work, the flow analysis of the implication network also identifies strong
and weak persistencies for problem (2), which are then transformed for persistencies for problem
(1).

As shown in Boros et al. (2006), the effectiveness of the roof duality method for finding persis-
tencies can be improved by using probing, which is a method that assigns values of 0 and 1 to some
variables and then compares any persistencies found for these alternative assignments. In some
cases, such probing analysis can (a) determine additional persistencies for the original problem or
(b) identify relationships between variables which must hold in a (local) optimum, meaning that
some pairs of variables will have equal or inverted values. This then allows to substitute one of the
variables in each pair with the other (or its inverse).

3 The maximum clique problem

3.1 QUBO formulations

We are interested in finding a maximum clique of a graph G = (V,E), where V = {1, . . . , n}. We
assign a decision variable xi to each vertex i, i ∈ {1, . . . , n}, indicating whether or not vertex i is
part of the maximum clique. One way to formulate the Maximum Clique problem as a QUBO is
to use the equivalence between Maximum Clique and the maximum independent set problem. The
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Figure 1: Illustration of the vertex splitting algorithm. G1 contains all neighbors of v (without v
itself) and the edges between them; G2 contains all vertices and edges of G except v and the edges
incident to v.

latter asks for a maximum independent set of vertices of G, that is a set such that no two vertices
from it are connected by an edge in G. Specifically, an independent set of H = (V,E) defines
a clique in graph G = (V,E), where E is the complement of set E. This leads to a constrained
formulation of Maximum Clique given by

maximize
xv∈{0,1}

∑
v∈V

xv subject to
∑

(u,v)∈E

xuxv = 0. (3)

The constraint formulation can equivalently be written in QUBO form as

H = −A
∑
v∈V

xv +B
∑

(u,v)∈E

xuxv, (4)

where the penalty weights can be chosen as A = 1, B = 2 (Lucas, 2014). One disadvantage of (4)
lies in the fact that H contains O(n2) quadratic terms for sparse graphs (of O(n) edges), limiting
the size of problems that can fit DW.

An alternative QUBO formulation of Lucas (2014) assumes the clique size K ≥ 1 is known. Its
Hamiltonian

HK = A

(
K −

∑
v∈V

xv

)2

+B

((
K

2

)
−

∑
(u,v)∈E

xuxv

)
(5)

is designed to attain the value zero only for an assignment defining a clique of size K, which is
achieved if one chooses weights A = K + 1 and B = 1 (Lucas, 2014).

3.2 Problem decomposition

In Djidjev et al. (2017) we developed several algorithms for decomposing an input graph too large
for DW into subgraphs small enough that the (Maximum Clique) QUBO corresponding to each
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graph n q strong weak probe
c-fat 200 1 0.00 0.00 100.00

200 5 0.00 0.00 100.00
500 1 0.00 0.00 100.00
500 5 0.00 0.00 100.00

Hamming 6 2 0.00 100.00 100.00
6 4 0.00 0.00 0.00
8 2 0.00 100.00 100.00
8 4 0.00 0.00 0.00

Table 1: Reduction in % from strong and weak persistencies as well as probing on selected c-fat
and Hamming graphs. Qubo for maximum clique.

generated subproblem fits DW. After solving each subproblem, the solutions are combined again
into a solution to Maximum Clique for the original graph.

We describe here an improved version of the most universal of those algorithms, in the sense
that it can be applied to all input graphs regardless of their structure. It works as follows. Given a
graph G = (V,E), pick any vertex v, e.g, with the smallest number of neighbors as in Djidjev et al.
(2017), and define two new graphs: a graph G1 induced by all neighbors of v (but without v itself)
and the graph G2 induced by V \ {v}, that is G without v and its incident edges (Figure 1). Then
find recursively the maximum cliques C1 of G1 and C2 of G2. If |C1| > |C2|, return as a maximum
clique for G the subgraph induced by C1 ∪ {v}, otherwise return C2. The recursion stops when G
is small enough to fit DW.

It is easy to see the recursion is finite, as both G1 and G2 contain no more than |V |− 1 vertices
each, since neither of them contains v, and that it correctly finds a clique of maximum size for G.
Unfortunately, in the worst case it may generate an exponential number of subgraphs (exponential
in the size of G). We will study in the next subsection how persistency analysis can help to reduce
the number of subgraphs generated.

3.3 Results with Qpbo

In our experiments, we used the C++ package Qpbo of Rother et al. (2007); Kolmogorov (2014)
for finding persistencies, developed for computer vision applications. We access Qpbo through a
Python interface that we adapted by modifying the PyQpbo package (Müller and Behnke, 2014).
This section presents results on the effectiveness of the method for Maximum Clique. We investigate
the application of Qpbo to QUBOs (4) and (5) on random as well as special graphs (c-fat and
Hamming graphs), both without and in connection with the graph splitting algorithm of Section 3.2.
Moreover, we compare the two QUBO formulations (4) and (5) presented in Section 3.1.

3.3.1 Qpbo on c-fat and Hamming graphs

We apply Qpbo to the QUBO formulation (4). The test graphs we use are from the 1993 DIMACS
Challenge on maximum cliques, coloring and satisfiabilty (Johnson and Trick, 1996) and have also
been used in Boros et al. (2006). Both graph families depend on two parameters: the number of
vertices n and an additional internal parameter, precisely the partition parameter c for c-fat graphs
and the Hamming distance d for Hamming graphs. We use the generation algorithms of Hasselberg
et al. (1993) for both graph families.

Table 1 shows the results (where both parameters c and d are summarized as a generic parameter
q). We see that, in six out of eight cases, Qpbo can find persistencies for 100% of the variables,
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Figure 2: Percentage of found (strong and weak) persistencies with Qpbo as a function of the edge
probability p with which random edges are inserted. C-fat graph with n = 500 and c = 2 (left) and
Hamming graph with n = 8 and d = 4 (right).

while in the remaining two cases it cannot find any persistency. Also we observe that probing is
the most effective algorithm, while finding strong persistencies is the least effective.

In order to observe and compare a wider range of percentages of solved variables with Qpbo,
we insert (or delete) edges from c-fat or Hamming graphs with a certain probability p which we
will vary.

Figure 2 (left) shows that when adding random edges (with edge probability p) to the (500, 2)
c-fat graph, no strong and weak persistencies are found for both the original graph as well as for
almost all dense modified graphs (since the x-axis starts at p = 0.97). Persistencies (as a percentage
of solved variables out of the n = 500 variables in the QUBO) are only observed for p ≥ 0.97 and
increase to 100% over a very short range. As expected, weak persistencies are found (slightly)
earlier than strong ones. The behavior for the Hamming graph with n = 8 and Hamming distance
d = 4 is similar.

Similarly to Figure 2, Figure 3 shows strong and weak persistencies as a function of p for the
Hamming graph with n = 8 and d = 4. However, the behavior of strong and weak persistencies is
different in this case. Figure 3 shows that Qpbo is able to assign a value to 100% of all variables in
the QUBO of the original Hamming graph via weak persistencies (see Table 1). Nevertheless, strong
persistencies are not found. We therefore add edges with probability p to observe a progression of
strong persistencies (Fig. 3, left) and remove edges with probability p for weak persistencies (Fig. 3,
right).

Figure 3 shows that strong persistencies increase gradually over the entire interval p ∈ [0, 1],
whereas the found weak persistencies disappear almost instantly as soon as edges are removed from
the graph.

3.3.2 Comparison of alternative QUBO formulations for Maximum Clique

The QUBO formulation (4) was used for all previous investigations. This is due to the fact that,
in contrast to (5), the former does not need the (usually unknown) clique size K as an input
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Figure 3: Percentage of found (strong and weak) persistencies with Qpbo as a function of the edge
probability p with which random edges are inserted (in case of strong persistencies, left plot) or
deleted (in case of weak persistencies, right plot). Hamming graph with n = 8 and d = 2.

p formu- QUBO
graph n or c lation size strong weak
Ham- 8 2 (4) 1280 0 100
ming 8 2 (5) 65536 0 0
c-fat 200 1 (4) 481 69 100

200 1 (5) 40000 0 0

Table 2: Reduction of the number of variables in percentage for the two QUBO formulations for
maximal clique on Hamming and fat graphs.

parameter. Nevertheless, this section investigates whether the choice of formulation has an effect
on the persistencies found and whether changing the QUBO formulation can result in more or fewer
persistencies. If this is the case, then it may be worth investing time to search for formulations
that are more suitable for the persistency algorithm.

In order to find the clique size that is needed for (5), we first run an alternative algorithm to
find the maximum clique size K for each tested graph. We then compute the QUBO coefficients
for (5) with parameter K and identify strong and weak persistencies using Qpbo.

Table 2 shows results for a Hamming graph with parameters n = 8 and d = 2 and a c-fat graph
with parameters n = 200 and c = 1. As can be seen from the table, formulation (5) results in much
larger QUBO problems (which are likely to also have a more complex structure, thus being more
difficult to solve for Qpbo) and thus in fewer persistencies compared to (4), so clearly the latter
formulation is preferable, at least for the type of graphs tested.

3.3.3 Combining Qpbo with the decomposition algorithm

We apply the graph splitting algorithm described in Section 3.2 to solve the Maximum Clique
problem on graphs of various sizes. However, before splitting a graph, we look for persistencies
(in particular, for strong and weak persistencies since applying probing in each time step took
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Figure 4: Proportional saving as a function of the expected number of edges of the random graph
when using Qpbo in the graph splitting routine, computed as (nqpbo − nno-qpbo)/nno-qpbo, where
nqpbo and nno-qpbo denote the number of solver calls when employing graph splitting with and
without Qpbo.

prohibitively long) and, if found, reduce the size of the graph by removing the corresponding
variables. We stop splitting when all generated (sub-)graphs are of size small enough to fit DW,
which in our case is 45 vertices.

We test the resulting algorithm on random graphs with n = 500 vertices and an expected
number of edges in the interval [10000, 40000].

Figure 4 visualizes the proportional reduction in the number of generated subproblems. For this,
we plot the ratio (nqpbo−nno-qpbo)/nno-qpbo as a function of p, where nqpbo and nno-qpbo denote the
number of solver calls when employing graph splitting with and without Qpbo, respectively. The
figure shows that, especially for sparse graphs, substantial reductions with respect to the number
of generated subproblems can be achieved.

4 The maximum cut problem

This section takes a closer look at the Maximum Cut problem introduced in Section 1. We again
state a QUBO formulation for Maximum Cut and present simulation results on g and U graphs,
which have already been defined and previously been used for benchmarking Maximum Cut prob-
lems in Kim et al. (2001) and Boros et al. (2006).
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graph n p strong weak probe
g 500 2.50 0.00 13.40 25.70

graphs 500 5.00 0.00 100.00 100.00
500 10.00 0.00 100.00 100.00

1000 2.50 0.00 11.40 25.60
1000 5.00 0.00 100.00 100.00

U 500 5.00 0.00 1.60 6.20
graphs 500 10.00 0.00 0.40 0.50

1000 5.00 0.00 2.70 5.60
1000 10.00 0.00 0.00 0.30

Table 3: Reduction in % from strong and weak persistencies as well as probing on selected g and
U graphs. Qubo for maximum cut.

4.1 QUBO and Ising formulation

We use the QUBO formulation for Maximum Cut of Boros and Hammer (1991) who show that the
value f of any cut in a graph G = (V,E) is given as

f(x) =
∑

(u,v)∈E

(xu(1− xv) + (1− xu)xv) , (6)

where xu ∈ {0, 1} for all u ∈ V is the indicator signalling which side of the cut vertex u belongs to.
Maximizing (6) over x ∈ {0, 1}|V | leads to a maximum cut.

The formulation (6) can be simplified when switching the input range of xu to an Ising model.
In (6), each term xu(1− xv) + (1− xu)xv is zero if and only if u and v belong to the same side of
the cut, and one otherwise. In an Ising formulation, that is when xu ∈ {−1,+1} for all u ∈ V , the
same term can be expressed as (1− xuxv)/2, leading to the Hamiltonian

H0(x) =
∑

(u,v)∈E

1

2
(1− xuxv),

which has to be maximized (just like (6)). Equivalently, we can minimize

H(x) = −
∑

(u,v)∈E

(1− xuxv) = −|E|+
∑

(u,v)∈E

xuxv

∼
∑

(u,v)∈E

xuxv, (7)

since |E| is constant. In the following we will solely use the simpler Ising formulation (7).

4.2 Ising on g and U graphs

We test Qpbo on the Ising formulation (7) for the Maximum Cut problem applied to g and U
graphs. Table 3 shows the results. As seen in the table, some weak persistencies are found, but no
strong ones. Unlike the results for Maximum Clique, where the found weak persistencies are either
0% or 100%, here we observe more varied results. Again, probing is the most effective algorithm.
Our results for Maximum Clique are roughly similar to the ones presented in Boros et al. (2006)
(who, however, use a different and possibly more elaborate algorithm than Qpbo, which they did
not make available).
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Additionally, we again studied how the performance of Qpbo varies as the graph becomes denser
by adding or removing random edges. These results are similar to the ones already described for
Maximum Clique (Figures 2 and 3) and are thus not presented here.

5 Conclusions

This paper studies the use of preprocessing methods to reduce the size of QUBO and Ising integer
programs. Such models have recently attracted increased attention since they allow constant time
solutions on newly available quantum annealers. However, the small number of available qubits on
such devices severely limits the range of solvable problems. This motivates the use of preprocessing
methods to reduce the number of required qubits, thus extending the application range of such
devices.

We use the package Qpbo (Kolmogorov, 2014; Müller and Behnke, 2014) to compute strong
and weak persistencies in integer programs and test the suitability of preprocessing methods on
two important NP-hard graph problems, the Maximum Clique and the Maximum Cut problems.

Our main findings can be summarized as follows:

1. The observed reduction in variables seems to be very problem-specific, both in terms of the
QUBO/ Ising formulation considered as well as the employed test graphs. Test graphs on
which Qpbo achieved 100% reductions for Maximum Clique did not lead to any reduction for
Maximum Cut or vice versa. We observe 0% and 100% reductions considerably more often
than reductions between those extremes.

2. When applied to a decomposition algorithm which divides up a maximum clique computation
on graphs of arbitrary size into many smaller subproblems, Qpbo can be used to reduce the
number of generated subproblems. This reduction seems especially significant for sparser
graphs.

3. Using two different QUBO formulations for Maximum Clique, we show that the performance
of Qpbo is not only dependent on the type of problem solved and the input graph, but also on
the specific QUBO formulation used. This, therefore, justifies research into finding formula-
tions for different optimization problems that are more suitable for identifying persistencies.
This is consistent with the much more general observation in combinatorial optimization prac-
tice that the choice of formulation for a given optimization problem can have a huge effect
on the time it will take to solve the resulting problem using popular solvers.

The effectiveness of Qpbo varied widely between seemingly similar problem instances. An
especially interesting and practically important open problem is to be able to characterize input
graphs and problem formulations that are more suitable for identification of persistencies.

Another interesting open problem is how to best speed up the persistency finding algorithms.
For instance, in the case where persistency finding (via Qpbo) is combined with the decomposition
algorithm (for Maximum Clique), we currently run Qpbo on every subgraph generated during the
graph splitting process. A better way is to try to use information collected during the persis-
tency analysis for the larger graph in order to infer persistencies for the smaller ones, rather than
computing them from scratch, thereby saving computation time.
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