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Abstract

We give here fast and efficient solutions to a fundamental underlying problem, encountered
frequently in the development of many dynamic real-world systems. This problem concerns the
maintainance of all pairs shortest path information in a planar digraph. We give both sequential
and parallel algorithms, that exploit the topology of the input digraph G, and which can also
detect a negative cycle, either if it exists or it is created during dynamic changes in G. The
parallel algorithms presented here are the first known ones for solving this problem. Our results
can be extended to hold for digraphs with genus g(n) = o(n), where n is the number of vertices
of the digraph.

1 Introduction

Let G be an n-vertex digraph with real valued edge costs but no negative cycles. The length of a
path pin G is the sum of the costs of all edges of p and the distance between a pair v, w of vertices
of G is the minimum length of a path between v and w. The path of minimum length between
v,w is called a shortest path between v and w. Finding shortest path information in graphs is
a very important and intensively studied graph problem with many applications. Recent papers
(4,7, 12,13, 14, 15, 17, 22, 27, 28, 29] investigate different versions of the problem according to the
structure of the input graph and the model of computation. All of the above-mentioned results,
however, relate to the static version of the problem, i.e. the graph and the costs on its edges
do not change over time. In contrast, we consider here a dynamic environment, where edges can
be deleted and their costs can be modified. More precisely, we investigate the following on-line
and dynamic shortest path problem: given G (as above), build a data structure (i.e. preprocess G
so as to reduce both time and space) in order to be able to answer very fast on-line single-pair
and/or single-source shortest path or distance queries. Also the data structure should be efficiently
updated and maintain shortest path information after a modification of G.

*This work is partially supported by the EEC ESPRIT Basic Reasearch Action No. 7141 (ALCOM II) and by the
Ministry of Education of Greece. The work of the second author is also partially supported by the NSF postdoctoral
fellowship No. CDA-9211155. Email: hristo@cs.rice.edu, pantziou@cs.dartmouth.edu, zaroliag@grpatvx1.bitnet



The dynamic version of the shortest paths problem has applications in the so called wvehicle
routing problem. Assume that you are in a vehicle located somewhere in the traffic network of
a city, and you want to know at any time the shortest route to the nearest hospital, drugstore,
hotel, etc, or to find the shortest route or distance to a specific place. Note that the underlying
traffic network may change dynamically: some roads may be closed (because of works or accidents),
certain roads may change behaviour at rush hours, or some other ones may change direction. This
problem gives rise to the development of a software system loaded to a very fast computer, where
a number of operators receive on-line queries from the drivers, get the appropriate answers and
transmit them back to the drivers.

There has been a growing interest in dynamic problems in the recent years [2, 10, 18, 19, 30].
The goal is to design efficient data structures that are not only capable of answering a series of
queries, but also can easily be updated after a modification of the input graph. Such an approach
has immediate applications to a variety of problems which are of both theoretical and practical
value. More precisely, dynamic algorithms for graph problems have applications to simulation of
traffic networks, high level languages for incremental computations, incremental data flow analysis,
interactive network design, maintainance of maximum flow in a network [3, 36, 37, 38], just to name
a few.

There are a few previously known algorithms for the dynamic shortest path problem. For
general digraphs, the best previous algorithms in the case of updating the data structure after
edge insertions/deletions were due to [9] and require O(n?) update time after an edge insertion
and O(n?logn) update time after an edge deletion. Some improvements of these algorithms have
been achieved in [2] with respect to the amortized cost of a sequence of edge insertions, if the edge
costs are integers. For the case of planar digraphs the best dynamic algorithms are due to [11]
for the case of edge cost updates. The preprocessing time and space is O(nlogn) (O(n) space
can be achieved, if the computation is restricted to finding distances only.) A single-pair query
can be answered in O(n) time, while a single-source query takes O(nv/Ioglogn) time. An update
operation to this data structure, after an edge cost modification or deletion, can be performed in
O(log3 n) time. In parallel computation we are not aware of any previous results related to dynamic
structures for maintaining shortest path information in the case of edge cost updates. On the other
hand, in parallel computation efficient data structures for answering very fast on-line shortest path
or distance queries have been proposed in [7], but they do not support dynamization. (We should
mention here that much of the recent work in either static [4, 27] or dynamic algorithms [11] for
shortest paths, is based on the recursive separator decomposition idea introduced by Frederickson
[12] and Lingas [28], in sequential and parallel computation respectively.)

In this paper, we give efficient sequential and parallel algorithms for solving the on-line and
dynamic shortest path problem, in the case where the input digraph is planar. More precisely,
for the sequential model of computation, we have achieved the following results which are clear
improvements over the best previous ones, in all cases where ¢ = o(n). Here ¢ is the minimum
number of faces that cover all vertices of the planar digraph among all embeddings of the graph.
(Note that ¢ = 1 if the digraph is outerplanar.)

Theorem 1 Given an n-vertex planar digraph G with real-valued edge costs but no negative cycles,
there exists an algorithm for the on-line and dynamic shortest path problem on G that supports edge
cost modification and edge deletion with the following performance characteristics: (i) preprocessing
time and space O(n + qlogq); (i) single-pair distance query time O(q + logn); (i) single-pair
shortest path query time O(L + ¢ + logn) (where L is the number of edges of ihe path); (iv)



single-source shortest path tree query time O(n + qy/loglog q); (v) update time (after an edge cost
modification or edge deletion) O(logn + log? q). In the case where the computation is restricted to
finding distances only the space can be reduced to O(n).

As it can be derived by [8, 23], the ezpected value for ¢ is O(1) for random graphs which are
planar. Then, our algorithms achieve the following expected performance: O(n) preprocessing time
and space, O(logn) (resp. O(L + logn)) distance (resp. shortest path) query time, O(n) single-
source query time, and O(log n) update time. For comparison, see the best previous results of [11]

stated above.
In the CREW PRAM model of parallel computation our result is the following.

Theorem 2 Given an n-vertex planar digraph G with real-valued edge costs but no negative cycles,
there erists an algorithm for the on-line and dynamic shortest path problem that supports edge cost
modification and edge deletion with the following performance characteristics: (i) preprocessing
time O(log? n + log* q) using O(n + ¢*/log® q) processors and space O(n + ¢*); (ii) single-pair
shortest distance query time O(logn) using a single processor; (iit) single-pair shortest path query
time O(L + logn) (where L is the number of edges of the path), using a single processor; (iv)
single-source shortest-path tree query in O(n) time using a single processor; (v) update time (after
an edge cost modification or edge deletion) O(logn + log? q) using O(logn + ¢*/logq) processors.

There are no comparative previous results for the parallel case. Similarly to sequential compu-
tation, our parallel algorithms have also very eflicient expected performance. Note that the CREW
PRAM is a very popular and well-established model in the case of shared memory parallel machines
[20, 21]. Moreover, as it has been proved in [24, 25, 26], the PRAM provides an excellent model for
fault-tolerant parallel computing. Our results can be directly applied to any distributed memory
parallel machine model (using e.g. [1]), even in the case of processor faults [26].

Our solution is based on the following ideas:

(a) The input planar digraph is decomposed into a small number, O(¢), of outerplanar sub-
graphs (called hammocks) satisfying certain separator conditions [14, 29]. Note that an embedding
of the input digraph in order to achieve such a (hammock) decomposition does not need to be
provided by the input as it is proved in [13, 22].

(b) A multi-level decomposition strategy is employed for the efficient solution of the problem
for the case of outerplanar digraphs that uses the so-called beneficial separators. Our separator
decomposition is adaptive in the sense that at any step, the computation of the next level beneficial
separators can be tuned up so as a certain parameter will never exceed a predefined value.

(c) A data structure is constructed during the decomposition of the outerplanar digraph and
is updated after each edge cost modification. This data structure contains information about the
shortest paths between properly chosen O(n) pairs of vertices. It also has the properties that the
shortest path between any pair of vertices is a composition of O(logn) of the predefined paths and
that any edge of the graph belongs to O(logn) of those paths (n is the size of the outerplanar
digraph).

We mention also the following extensions and generalizations to our results discussed in the
paper.

(i) Our algorithms can detect a negative cycle, either if it exists in the initial graph, or if it is
created after an edge cost modification.

(ii) Using the ideas of [13, 22], our results can be extended to hold for any digraph with genus
bounded by any function g(n) = o(n). In such a case an embedding of the graph does not need to
be provided by the input.



(iii) Although our algorithms do not directly support edge insertion, they are so fast that even
if they are run from scratch, they still provide better results compared with those of [9].

(iv) Our results find applications in the problem of the maintainance of the all pairs reachability
information in a planar digraph G. We can achieve further improvements over the recent results of
[33] for the case of edge insertions/deletions, by treating the reachability problem (i.e. whether a
vertex v is reachable from a vertex z via a directed path) as a degenerated version of the shortest
path problem.

The paper is organized as follows. In section 2 we give some definitions, preliminary results, and
basic algorithms used later in the paper. In section 3 we consider sequential and parallel algorithms
for outerplanar digraphs and in section 4 we obtain our basic results for planar digraphs. In section
5 we consider generalizations and applications of our results.

2 Preliminaries and Basic Algorithms

Let G = (V(G), E(G)) be a planar digraph with real edge weights but no negative cycles. A
separation pair is a pair of vertices whose removal separates G into two disjoint subgraphs. Note
that if G is outerplanar and biconnected, a separation pair is either an edge or a pair of vertices
belonging to the same interior face. A separator S for a graph G is a pair of sets (V(5), D(5)) where
D(S) is a set of separation pairs and V(.9) is the set of the endpoints of D(.5). A k(n)-separator in
an n-vertex graph G is a separator S such that |V(5)| = k(n). A separation pair in an outerplanar
biconnected graph G, is called suitable if separates G, into two subgraphs G; and G such that
[V(G1)| = ¢|V(G,)| and |V(G2)| = (1 — €)|V(G,)| for some previously fixed (1/2) < e <(2/3). A
(k(n), ¢)-beneficial separator S in G, ([V(G,)| = n) is a k(n)-separator in which each subgraph H
produced after the removal of 5 satisfies the following two conditions: (B1) |V(H)| < 4n/k(n) and
(B2) |(V(H) x V(H))n D(S5)| < ¢, for some ¢ > 3. We will call the separation vertices (pairs) of
VHYNV(S) (V(H) x V(H))n D(S)) separation vertices (pairs) attached to H. A tree is called
convergent (divergent) if the edges of the tree point from a node to its parent (children). A DSP
(divergent-shortest-path) tree rooted at some vertex z in a digraph G, denoted as DSP(z,G), is a
divergent tree of shortest paths such that: (P1) for each v € G, the path from « to v in DSP(z,G)
is the shortest one in G; and (P2) DSP(z, G) includes any vertex of G reachable from z.

For each (directed) edge (v, w) of G we define the label S(v, w) of the edge as follows: §(v,w) =
{ul{v, w) is the first edge in a shortest path from v to u}. Each S(v,w) is described as a union of
a minimum number of subintervals of [1,n], assuming V = {1,2,...,n}. (A subinterval is allowed
to wrap around n.) Edge labels are used in the succinct encoding of all pairs shortest paths
information in what it is called compact routing tables [14, 35]. Compact routing tables have been
used for keeping shortest path information (edge labels) in a space-efficient way, either in sequential
[13, 14] or in parallel computation [22, 29]. Here, we shall consider their use only for outerplanar
digraphs. If G is outerplanar then each S(v,w) is a single interval [a,b] [16]. It is clear that the
total size of a compact routing table for an outerplanar graph is O(n). Computation of edge labels
is very useful for finding any shortest path information. Given edge labeling information in an
n-vertex outerplanar graph G,, then a convergent or divergent tree of shortest paths rooted at
some vertex @ can be constructed either in O(n) sequential time, or in O(logn) parallel time using
O(n/logn) processors on an EREW PRAM (14, 29]. Also, given an n-vertex outerplanar digraph
G, along with divergent shortest path trees rooted at a constant number of distinguished vertices
a;, a compressed version C(G,) of G, is an outerplanar digraph of O(1) size and can be generated
in either O(n) sequential time, or in O(logn) parallel time using O(n) CREW PRAM processors.



Furthermore, for every pair a;,a; in G, (¢ # 7), if a shortest path from a; to a; exists in G, then
there is a corresponding (compressed) one in C(G,) of equal cost [14, 29].

Let G, be an outerplanar digraph provided with a (k(n), ¢)-beneficial separator S (¢ = O(1)).
Let also SR(G,) be the graph obtained from G, as follows: remove S from G,, substitute each
subgraph produced by its compressed version and then join again the subgraphs. We call SR(G,)
the sparse representative of G,. Clearly, SR(G,) has size O(k(n)).

A hammock decomposition is a decomposition of G into certain outerplanar digraphs called
hammocks. This decomposition is defined relative to a given set of faces that cover all vertices of
G. Let ¢ be the minimum number of such faces (among all embeddings of ), i.e. ¢ is the minimum
cardinality among all the so called face-on-vertex coverings of G. It has been proved in [14, 29]
that a planar digraph G can be decomposed into O(¢) hammocks either in O(n) sequential time,
or in O(lognlog* n) parallel time using O(n) CREW PRAM processors. Also, by [13, 22], we have
that an embedding of G does not need to be provided by the input in order to compute a hammock
decomposition of O(¢) hammocks. Hammocks satisfy certain separator conditions and hammock
decomposition employs the following properties: (i) each hammock has at most four vertices in
common with any other hammock (and therefore with the rest of the graph), called the attachment
vertices; (ii) the hammock decomposition spans all the edges of G, i.e. each edge belongs to only
one hammock; and (iii) the number of hammocks produced is order of the minimum possible among
all possible decompositions. This decomposition allows us to reduce the solution of a given problem
II on G, into the solution of Il in an outerplanar digraph.

In parallel computation we will make use of the following recent result [4]: given an n-vertex pla-
nar digraph, we can compute shortest path trees from s sources in O(log? n) time using O(sn/logn)
EREW PRAM processors. A preprocessing phase is needed which takes O(log?n) time using
O(n*®/log®n) CREW PRAM processors using O(n?) space.

In the sequel, we can assume w.l.o.g. that G, is biconnected and the vertices are named
consecutively around the exterior face. This does not affect shortest path information for three
reasons: (i) renaming is (clearly) not a problem; (ii) the edges added to enforce biconnectivity, can
be assigned a very large weight, e.g. the sum of the absolute values of all edge costs of G,,, such that
they will not be used by any shortest path; and (iii) the conversion can be done in O(n) sequential
time, or in O(log nlog™* n) parallel time using O(n/lognlog*n) CREW PRAM processors [14, 29].
As we will see, these bounds does not affect our preprocessing algorithms.

2.1 Computing a beneficial separator

Suppose we are given an outerplanar digraph G, = (V(G,), E(G,)), where n = |V(G,)|. The
algorithm for computing a (k(n), ¢)-beneficial separator, 2 < k(n) < g -n#, in G,, where 3, p are
constants, and 0 < g < 1, is as follows. (In the sequel, with the expression “for any k(n)”, we will
mean “for any value of k(n) in the range [2,3 - n#]".)

PROCEDURE Beneficial_Separator(G,, k(n), ¢, S)
BEGIN

1. Convert GG, into an undirected outerplanar graph G, and then triangulate each interior face
of G,,. Let initially V(.5) = D(S5) = 0.

2. If the number n,, of separation pairs attached to G, is less or equal to ¢, then let p = {p1, p2}
be a suitable separation pair in GG, which separates GG, into two subgraphs G; and G with no more
than 2n/3 vertices each. Otherwise (ngep > ¢), let p = {p1,p2} be a separation pair that separates



G, into subgraphs G and G2 each containing no more than 2/3 of the number of separation pairs
attached to G.

3. Let V() = V(S)U {p1, p2} and D(S) = D(S)U {p}.

4. Run steps 2 and 3 recursively on each one of G; and G3, until k(n) separation pairs are
produced.

5. Remove all edges added for the triangulation of G, in step 2.
END.

Lemma 2.1 Procedure Beneficial Separator{G,, k(n),c, ) correctly finds a (k(n), c)-beneficial sep-
arator S of an n-vertex biconnencted outerplanar digraph G, either in O(n) sequential time, or in
O(log nlog k(n))) parallel time using O(n) CREW PRAM processors.

Proof: In the appendix. ll

2.2 Adaptive separator decomposition

The following algorithm generates an adaptive separator decomposition in G, (by finding successive
(k(n), c)-beneficial separators in a recursive way) and builds the two main data structures: the
separator tree, S(G,), which is a tree of maximum degree k(n) and binary trees T's used to support
binary search in G,.

ALGORITHM Sep_Tree(G,, k(n))
BEGIN

1. Run procedure Beneficial_Separator(G,, k(n), 3, 5) to find in G, a (k(n), 3)-beneficial sepa-
rator §.

2. Create a binary search tree T's with nodes the separation pairs of S. This can be done at
each iteration of procedure Beneficial_Separator as follows. Create a node v for each separation pair
p € § produced. Assume that p separates a subgraph G of G, into two subgraphs G1(p) and Ga(p).
Associate with v the separation pair p and the subgraph G. The children of v are those nodes v
and v, that correspond to the separation pairs p’ and p” separating G(p) and Gy(p) respectively.

3. For each component C of G, — § run steps 1 to 4 recursively to create a separator tree
5(C) corresponding to C, if |V(C)| > Ko, or let S(C) = C, if |V(C)| £ Ko, for some appropriately
chosen constant K.

4. Create a separator tree S(G,) rooted at a new node vg with children the roots of the
subtrees constructed in step 3. Associate with vg a pointer to Ts.

ENbD.
Let d(k(n)) be the depth! of the separator tree.

Lemma 2.2 Algorithm Sep_Tree(G,, k(n)) can be implemented to run in O(n) time. A parallel
CREW PRAM implementation of the algorithm runs in O(log? n) time using O(n) processors. The
space required is O(n).

Proof (sketch): For any beneficial separator S and any vertex of Tg there exists a distinct
separation pair of G,. Thus the total number of vertices in all trees T's is O(n). Furthermore, as the
number of vertices in S(G,) equals the number of trees T's, then |V(S5(G,))| = O(n) and the space

!Note for example that, if k(r) = O(1) then d(k(n)) = O(logn); if k(r) = O(logn), then d(k(n)) =
O(log n/ loglog n); if k(r) = O(y/n), then d(k(n)) = O(log log n).



required by the algorithm is O(n). Therefore, steps 2 and 4 can be implemented to run in O(n) time,
in total. In order to achieve O(n) upper bound for the total running time S(n) for all executions
of step 1, we can construct in algorithm Beneficial_Separator the dual graph of G, (excluding
the outer face), which is a tree, and then use the data structure of [34] for linking and cutting
trees that will reduce the time for finding one separation pair in algorithm Beneficial_Separator
to O(logn). Then the recurrence for S(n)is S(n) < k(n)S(n/k(n))+ O(k(n)logn) with solution
S(n) = O(n). For the parallel implementation we have the following. The recursion depth is
d(k(n)). Finding a (k(n), 3)-beneficial separator S in step 1 takes O(lognlogk(n)) parallel CREW
PRAM time, using O(n) processors by lemma 2.1. Steps 2 and 4 clearly need O(logk(n)) parallel
time and O(n) processors. Therefore, the parallel CREW PRAM time satisfies the recurrence
Tp(n) = Tp(n/k(n)) + O(log nlog k(n)) which gives T,(n) = O(log? n) for any k(n). N

Remark 2.1: Note that the total searching depth of the separator tree S(G,) along with its
associated Ts trees is O(logn). To see this, just replace every star subgraph of S(G,) consisting of
a node along with its children, by the corresponding Ts tree. Clearly the resulting tree will have
depth satisfying the recurrence H(n) = H(n/k(n))+ O(logk(n)), which gives H(n) = O(logn) for
any k(n).

2.3 Computing shortest path trees

Consider the following fundamental problem which will be used as a main subroutine by our
algorithms in the next section: suppose that we have any two digraphs G; and Gy separated
by a single separation pair (v, w). Assume also that the following shortest path (DSP) trees are
given: DSP(v,G,), DSP(w, G3), DSP(v,Gy), DSP(w, G1), and DSP(s,G1), s € G;. We want to
compute DSP(s, G4 U Gg).

In the sequel, by dg(z,y) we will denote the distance of a shortest path between vertex z and
vertex y in a graph G. We will omit the subscipt in the cases where it is clear (by the context) to
which graph the distance is refered to.

Proposition 2.1 Let a be a node of DSP(v,G3) such that d(s,v)+ d(v,a) > d(s,w) + d(w,a).
Then, this inequality is also satisfied by any descendant of a in DSP(v,G3). Similarly, let b be a
node of DSP(w,G3) such that d(s,w) + d(w,b) > d(s,v) + d(v,b). Then, this inequality is also
satisfied by any descendant of b in DSP(w, G3).

Proof (sketch): Suppose on the contrary that d(s,v) + d(v,z) < d(s,w) + d(w,z) for some
descendant z of a in DSP(v, G3). Let d(s,t;y) denote the distance of the shortest path from s to ¢
through vertex y. We have that, d(s,z;v) = d(s,a;v) + d(a,z) > d(s,a;w)+ d(a,z) = d(s,z; w).
That is, the shortest path from s to z goes through w, a contradiction. The proof for DSP(w, G)
is similar. N

A node ¢, in DSP(v,G2) will be called critical with respect to Gy or simply Ga-critical if: (i)
d(s,v) + d(v,c,) > d(s,w) + d(w,c,) and (ii) d(s,v) + d(v,z) < d(s,w) + d(w, z), where z is the
parent of ¢, in DSP(v, G3). G2-critical nodes ¢,, in DSP(w, G3) are defined similarly.

A node ¢, in DSP(w, Gq) will be called critical with respect to Gy or simply Gy -critical if: (i)
d(s,v) + dg,(v,w)+ d(w, cy) > d(w, ¢yy) and (ii) d(s,v) + dg, (v, w) + d(w, z) < d(s, ), where z is
the parent of ¢,, in DSP(w, G1). Gy-critical nodes ¢, in DSP(v», (1) are defined similarly.

A node r, in DSP(s,Gq) will be called crucial if: (i) d(s,v) + dg,(v,w) + d(w,rs) < d(s,rs)
and (ii) d(s,v) + dg, (v, w) + d(w, z) > d(s, ), where z is the parent of r, in DSP(s, G1).



Proposition 2.2 Let Ty be the tree resulted from DSP(v,G3) after the deletion of all subtrees
rooted at Gy-critical nodes c,, and Ty be the tree resulted from DSP(w,Gy) after the deletion of all
subtrees rooted at Gq-critical nodes ¢,,. Then Ty N Ty = {z|d(s,v)+ d(v,2) = d(s,w) + d(w,z)}.

Proof (sketch): Assume that z is a node that belongs to both 77 and 73. By proposition 2.1,
o cannot be a descendant of a Gs-critical node ¢, in DSP(v,G3). Therefore, 2 is an ancestor of
a G-critical node ¢, and d(s,v) + d(v,z) < d(s,w) + d(w,z). Also, since z is an ancestor of a
G;-critical node ¢,, (in DSP(w, G9)), d(s,v) + d(v,z) > d(s,w) + d(w,z). Therefore, the only way
for a node z to be in Ty N T is to satisfy d(s,v) + d(v,z) = d(s,w) + d(w,z). W

We are now ready to prove our main lemma.

Lemma 2.3 Suppose that we have two digraphs G1 and Gy (with my and m, edges respectively)
separated by a single separation pair (v,w). Assume also that the following shortest path trees
are given: DSP(v,G3), DSP(w,Gsy), DSP(v,Gy), DSP(w,Gy), and DSP(s,G1), s € G1. Then
DSP(s,G1 UG3) can be computed in O(my + my) sequential time, or in O(1) parallel time using
O(my + mq) CREW PRAM processors.

Proof (sketch): Let dg,ua, (v, w) = min{dg, (v, w), dg,(v, w)}. The proof follows a case analysis.
Case l.a: dg,(v,w) < dg,(v,w) and dg,(w,v) < dg,(w,v). Then DSP(s,G1 U G3) can be
obtained by grafting at v and w the trees T} and T respectively (as they are defined in proposition
2.2), and breaking ties arbitrarily between 77 and Tj. This is justified as follows. The fact that
de, (v,w) < dg,(v,w) and dg, (w,v) < dg,(w,v), implies that every shortest path in Gy stays
entirely in Gy (i.e. does not involve a subpath belonging to Gy with endpoints the vertices v and
w). Then v and w is not an ancestor of each other and every node in Ty — (T3 N T3} is in a shortest
path from s, and the same happens from every node in T3 — (73 N 1%). For the nodes in T3 NT5 we
decide arbitrarily to which of the subtrees (of DSP(s,G1UG32)) rooted at v and w they will belong.
Case 1.b: dg, (v, w) > dg,(v,w) and dg, (w,v) > dg,(w,v), but dg, (s, v) + dg, (v, w) > dg, (s, w)
and dg, (s, w)+ dg, (w,v) > dg,(s,v). Then DSP(s,G1 UGy) can be obtained by grafting at v and
w the trees Ty and Tj respectively, and breaking ties arbitrarily between Ty and T%. (Justification
is similar to that one of case 1.a.)

Case 2: dg, (v,w) > dg,(v,w) and v is an ancestor of w in DSP(s, G1). Then v is also an ancestor
of w in DSP(s, G1UG,). (Since v is an ancestor of w in DSP(s, G1) we have that d(s, v)+dg, (v, w) <
d(s,w).) From the hypothesis dg, (v,w) > dg, (v, w), hence d(s,v) 4+ dg,(v,w) < d(s, w). Therefore
v is an ancestor of w in DSP(s, G3 UG2). Moreover, DSP(s, G; UG2) can be constructed as follows.
Let T* be the subtree of DSP(s,G) rooted at crucial node r, which is an ancestor of w. Then
DSP(s,G; U G3) consists of DSP(s,Gy) — T* along with tree DSP(v, G3) grafted at node v of
DSP(s,G1)—T* and tree T}, grafted at node w of DSP(v, Gy), where T}, consists of the nodes
of T* arranged in a DSP way rooted at w. The construction is correct since now, all descendants
of 75 in DSP(s,Gy) will be descendants of w in DSP(s,Gy U G3) (from the definition of crucial
nodes ry). Therefore, it suffices to do the following operations on DSP(s,G): prune T™ at rg,
graft DSP(v,G3) at v and also graft a new DSP tree 7}, which will have now all nodes in T
arranged in a DSP way from w. This can be done by pruning all subtrees rooted at (/j-critical
nodes of DSP(w, G1). Clearly, T}, can be constructed in O(|DSP(w,G)|) sequential time, or in
O(1) parallel time using O(|DSP(w,G1)|) CREW PRAM processors.

Case 3: dg, (v,w) > dg, (v, w) and v is not an ancestor of w in DSP(s, G;) (and vice versa).
Case 3.a: d(s,v) + dg,(v,w) > d(s,w). The construction of DSP(s,G; U G3) is similar to the
construction described in case 1.a.



Case 3.b: d(s,v)+ dg,(v,w) < d(s,w). Then w is a descendant of v in DSP(s,G1 U Gg) (since in
such a case, the shortest path from s to w should go through v) and the construction of the DSP
tree is done in the same way as it is described in case 2.

Remark 2.2: Clearly, similar cases to 2 and 3 above hold when the roles of v and w are inter-
changed.

The resource bounds follows from the fact that the computation involves a constant number
of manipulations on trees of size at most O(m; + mg) and also by the fact that the dominating
step is the identification of critical and crucial nodes at the various DSP trees. This can be
done, for each such tree T', in O(|T|) sequential time in a straightforward way. For the parallel
implementation, we assign one processor to every node of T'. Each processor checks in O(1) time
(from the preprocessing of T') if the two conditions in the definition are satisfied. The processors
verifying the conditions, mark the associated nodes as critical (or crucial). Finally, the resulted
DSP(s,G1UGy) tree should be preprocessed. This means that each node v of the tree should know
the distance d(s,v). This can be also achieved in O(1) parallel time as follows. Assign a processor
to each node of DSP(s,Gy U G3). If v also belongs to DSP(s,G) then do nothing. If not, then
let z be the node of DSP(s, ;) where a new tree 7" has been grafted. Note also that x is the
root of T'. Then each processor executes the following: d(s,v) = d(s,z)+ d(z,v), where d(z,v) is
already known by the preprocessing of 77. The bounds follow. Clearly, lemma 2.3 gives body to a
procedure for constructing a DSP tree. Let us call it DSP_Tree(G, G2, (v,w),s,G1 U G3). B
Remark 2.3: It is well known [34] that a convergent shortest path (CSP) tree rooted at a vertex
s is a directional dual of a DSP tree rooted at s. Therefore, if we reverse the direction of edges in
G1 U G4 and apply the above method, we will have a CSP tree rooted at s. Hence, w.l.o.g. we will
assume in the sequel that procedure DSP _Tree also computes the CSP tree rooted at s.

3 Dynamic Algorithms for Outerplanar Digraphs

In this section we shall give algorithms for solving the on-line and dynamic shortest path problem
in an outerplanar digraph G,.

3.1 The data structures and the preprocessing algorithm

The data structures used by our algorithms are the following:

(I) the separator tree S(G,) along with its associated Ts trees. Each node of S(G,) contains
the following attributes: name, level number, a pointer to its parent, a pointer to the corresponding
subgraph G, a pointer to the sparse representative S R(G) of G, and a pointer to the associated T's
tree. Each node of T's contains the following attributes: name, level number, a pointer to its parent,
a pointer to its left child, a pointer to its right child, a pointer to the corresponding separation pair
p, a pointer to G1(p), a pointer to SR(G1(p)), a pointer to Gz(p), a pointer to SR(G(p)), and a
pointer to its corresponding node in S(G,). (In the sequel, we will use the notation v.z to refer to
the attribute z of node v in either tree.)

(II) Each graph S R(G@) (except for the one corresponding to the root of §(G,)) is associated (via
pointers) with at most 6 convergent and divergent compressed shortest path trees (inside SR(G))
rooted at the (at most 6) separation vertices of SR(G), that separate it from its parent subgraph.
Note that for those subgraphs G corresponding to a leaf of 5(G,), we have that G = SR(G) and
therefore the convergent and divergent shortest path trees for these subgraphs, are the original



ones. (We also keep temporarily the compact routing tables which help us to create these original
convergent and divergent shortest path trees.)

We next give an algorithm which makes a preprocessing of an outerplanar digraph G, (by
creating the above data structures), in order to answer very fast on-line queries requesting either
the shortest path or distance between any two vertices, or the shortest path tree rooted at some
given vertex. The basic idea of the preprocessing algorithm is the following. We build a tree data
structure based on an adaptive separation decomposition of G,, by an application of algorithm
Sep_Tree. Simultaneously, we keep shortest path information among separation vertices in sparse
representatives, for each level of the separator tree produced. The shortest path information needed
to be stored, is determined by the following observations: (i) the only shortest path and distances
that a separation pair p (corresponding to a node in a Ts tree) needs to know, are the shortest
paths and distances to all separation pairs that are ancestors of p in Ts; (ii) each separation pair
p of a subgraph G, is also a separation pair of SR(G).

For lack of space, we give here an informal description of the preprocessing algorithm. A more
formal one is given in the appendix. The algorithm proceeds in three steps. First, find shortest
path information in GG,,. Second, construct a separator tree S((,) using algorithm Sep_Tree. Third,
compute the sparse representative 7.5 R(G,) of the root node r of S R(G,,) as follows. For each child
v of r, run step 3 recursively on v to compute v.SR(G). Having computed v.5R(G), compute their
compressed versions C'(v.SR(G)). Then using lemma 2.3 and the T's tree associated with r, compute
DSP trees rooted at each separation vertex p attached to f(z).SR(G), where f(z) is the parent
of a node z in Ts, f(z).SR(G) = ¢.SR(G)U 2*.SR(G) and z* is the sibling of z in T's. Initially,
z = v and v.SR(G) = C(v.5R(G)). Proceed in a bottom-up fashion in T's until the computation
of r.SR(G,). Let us call the above algorithm Pre_Outerplanar(G,, k(n)).

Lemma 3.1 Algorithm Pre_Outerplanar{G,, k(n)) runs in O(n) time. A parallel CREW PRAM
implementation of the algorithm runs in O(log® n) time using O(n) processors. The space require-
ment is O(n).

Proof (sketch): Step 1 needs O(n) sequential time, or O(log® n) parallel time using O(n) pro-
cessors and O(n) space, by [14, 29]. Step 2 needs by lemma 2.2 either O(n) sequential time,
or O(log?n) parallel CREW PRAM time, using O(n) processors. The space required by step 2
is O(n). Let P(n) be the sequential time, space and parallel work? of step 3. Running step 3
recursively for each child v of r in S(G,) takes k(n)P(n/k(n)) sequential time, space and par-
allel work. Assume that all shortest path information (as well as compressed versions) concern-
ing v.5 R(G) have been computed. Computation of r.SR(G,) needs O(k(n)logk(n)) sequential
time, space and parallel work, by lemma 2.3 and tree r.Ts. Therefore, step 3 satisfies the re-
currence P(n) = k(n)P((n/k(n)) + O(k(n)logk(n)), whose solution is P(n) = O(n) for any
k(n). Using similar reasoning, the total parallel time needed is described by the recurrence
Tp(n) = Tp(n/k(n)) + O(log? k(n)). Its solution depends on the exact value of k(n). For ex-
ample, for k(n) = O(n*), 0 < p < 1, we have T,(n) = O(log® n), while for k(n) = O(log® n), a > 1,
we have Tp,(n) = O(log nloglog n). The bounds follow.

3.2 The update algorithm

In the sequel, we will show how we can update our data structures for answering on-line shortest
path queries in outerplanar digraphs, in the case where an edge cost is modified. (Note that

2j.e. the product of time and number of processors used, or alternatively the total number of operations.



updating after an edge deletion is equivalent to the updating of the cost of the particular edge with
a very large weight, such that this edge will not be used by any shortest path.) The algorithm for
updating the cost of an edge € in an n-vertex outerplanar digraph G, is based on the following idea:
the edge will belong to at most O(logn) subgraphs of G, as they are determined by the Sep_Tree
algorithm. Therefore, it suffices to update (in a bottom-up fashion) those subgraphs that are on
the path from the subgraph £.G containing e (where £ is a leaf of S(G,)) until the root of S(G,).
Let r be the root of S(G,). (Clearly, G, = r.G.) Let f(z) denote the parent of a node z in S(G,) or
in some tree T, and u® denote the sibling of a node u in a Ts tree. Note that v.GUu*.G = f(u).G,
and of course, u.SR(G)Uuw*.SR(G) = f(u).SR(G). The algorithm for the update operation is the
following.

ALGORITHM Update_Outerplanar(r.G, k(n), e, w(e))
BEGIN
1. Find the child z of r in S(G,) for which e € z.G.
2. if z.level = d(k(n)) then
Update the edge cost of e with the new one w(e) in z.G.
Compute new convergent and divergent shortest path trees rooted
at the separation vertices attached to z.G.
else (a) Update_Outerplanar(z.G, k(n), e, w(e))
(b) Find the child y of r in r.T's for which e € y.G.
(¢) Run step (2.b) recursively on y.
(* Let (p1,p2) be the separation pair between y.SR(G) and y*.SR(G). *)
(d) for each separation vertex p attached to f(y).SR(G) do
DSP _Tree(y.SR(G), y*.S R(G), (p1, p2), p, f(y).SR(G)).
(e) if f(y) is the root of a T's tree, but not the root of 5(G,) then
Generate a compressed vesrion of f(y).SR(G).
END.

Lemma 3.2 Algorithm Update.Outerplanar updates the data structures created by the preprocess-
ing algorithm after an edge cost modification: (i) in O(k(n)) sequential time, or in O(logn) parallel
time using O(k(n)) CREW PRAM processors, if k(n) = O(n#), 0 < p < 1; (%) in O(d(k(n))-k(n))
sequential time, or in O(logn) parallel time using O(d(k(n))- k(n)) CREW PRAM processors, if
k(n) = O(log®n), a > 0, a constant.

Proof (sketch): We need only to determine which leaf of S(G,) contains the given edge e. This
takes O(logn) time using a single processor (according to remark 2.1). ;From the construction
of S(G,) and Tg, the rest of .G and y.G that contain also the edge e are determined from
the path between the appropriate leaf and the root of each one of S(G,) and Tg. Clearly, the
total sequential time and CREW PRAM processors used are described by the recurrence U(n) =
U(n/k(n))+0O(k(n)), since (as it follows by lemma 2.3) the sequential time and number of processors
used in order to update a tree T's with k(n) leaves, as well as to compress the sparse representative
associated with its root [14, 29], is O(k(n)). Therefore, U(n) = O(d(k(n))-k(n))if k(n) = O(log® n),
a > 0and U(n) = O(k(n)) if k(n) = O(n*), 0 < p < 1. Using similar reasoning, the CREW PRAM
time satisfies the recurrence T(n) = T(n/k(n)) + O(logk(n)). K

Remark 3.1: An edge e may belong to two subgraphs of (,. In the case where e belongs
to subgraphs z.G and a'.G, where z and 2’ are children of the root of S(G,), run algorithm
Update_Outerplanar on ¢.G and «’.G. Let U’(n) be the total sequential time and CREW PRAM
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processors used, for updating G, in this case. Then U’'(n) = 2U(n/k(n)) + O(k(n)), where U(m)
is the time and processors used by algorithm Update_Outerplanar in order to update a digraph of
size O(m). Clearly, the resource bounds of lemma 3.2 remain the same.

3.3 The single-pair query algorithm

We shall give an informal description of the query algorithm for finding the shortest path or distance
between any two vertices v, z. (A more formal description is given in the appendix.) The algorithm
is as follows. Search S(G,) to find a node vg such that S separates v from z in G,. Determine
also the subgraphs H and H' that contain v and z respectively. Search the corresponding tree
vs.Ts to find the first separation pair p = (p1,p2) in vs.Ts that separates v and z. Compute the
shortest path or distance between v and z, as follows. Let d(v, z) denote the distance of the shortest
path §P(v,z) between v and z. Then clearly, d(v, z) = min{d(v, p1) + d(p1, z), d(v,p2) + d(p2, 2)}.
Hence, it suffices to compute the distances d(v,p1), d(p1, z), d(v, p2) and d(ps, z) (as well as their
corresponding shortest paths). We will show how to compute the shortest path or distance d(v, py).
(The computation of the other ones is similar.) Since H has at most 6 separation vertices x;,
1 < i < 6, it is clear that d(v,p;) = min;{d(v,z;)+d(z;,p1)}. Computation of d(z;, p;) can be done
using the shortest path information associated with the nodes of vg.Ts. The computation of d(v, 2;)
can be done as follows. First, find the leaf ¢ of S(G,), for which v € £.G' (where G is the subgraph
associated with £). From the convergent and divergent shortest path trees in £.G, compute d(v, £.2;)
where £.2; are the separation vertices of £.G. Clearly, d(v, ;) = min;{d(v,{.x;)+d(¢.z;,x;)} where
1 < j < 6. Compute d(f.z;, z;) step-by-step, by walking the path from £ up to vs and by using the
shortest path information associated with the nodes of S(G,). What left to be explained is how
the original shortest path can be obtained. This can be done by uncompressing the compressed
shortest path C'(SP(v,p1)). The uncompression involves at most a traversal of the subtree of §(G.,)
rooted at vg and a traversal of the path from vg up to the root of S(G,). Clearly, the traversal
time can not exceed the number of edges of the original path.

Lemma 3.3 Algorithm Query_Outerplanar(G,,v,z,k(n)) finds the shortest path (resp., distance)
between any two vertices v and z in an n-vertex outerplanar digraph in O(L+logn) (resp., O(logn))
time using a single processor.

Proof: In the appendix. i

3.4 The single-source query algorithm

Let U C V be a subset of O(1) vertices of G, with a weight do(u) on any v € U. For any vertex v
of G the weighted distance d(U,v) is defined by d(U,v) = min{d,(v) + d(u,v)|u € U}. We assume
that d(U,v) = do(v) for every v € U. The following algorithm computes d(U,v), Vv € G..

ALGORITHM Query._Outerplanar _DSP _Tree(G,, U)
BEGIN

1. Let S be the separator corresponding to the root r of S(G,). Compute d(u, s) for all vertices
u € U and s € § by using the query algorithm.

2. For any s € 5 define do(s) = min{d(u, s)lu € U} = d(U, s).

3. Run recursively Query_Outerplanar DSP _Tree(w.G, (S U U) N w.G), on each child w of r
which is not a leaf of S(G,). (If w is a leaf, then DSP trees are computed easily since the associated
graph is of O(1) size.)
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END.
Lemma 3.4 Algorithm Query_Outerplanar_DSP_Tree runs in O(n) time using a single processor.

Proof (sketch): Correctness of the algorithm comes from the fact that two outerplanar subgraphs
of G, have only one separation pair in common. Let D(n) be the running time of the algorithm.
Then, D(n) < k(n)D(n/k(n)) + O(|S] - |U] -log n) = k(n)D(n/k(n)) + O(k(n)logn), which gives
D(n) = O(n) for any k(n). B

Having the distances, we can produce a shortest path tree rooted at any « € U in O(n) time
as follows. Each vertex z (except for u) checks its neighbors and selects as its parent that vertex
y which satisfies: d(u,z) = d(u,y) + c(z,y) (c(z,y) is the weight of edge (z,y)). If v is any vertex
of the graph, then the single-source shortest path tree rooted at v can be computed in O(n) time
by running Query_Outerplanar_DSP _Tree(G,, {v}) with do(v) = 0.

3.5 Main results and negative edge costs

Theorems 1 and 2 (for the case of outerplanar digraphs, i.e. ¢ = 1) follow from lemmata 3.1, 3.2, 3.3
and 3.4, if we set k(n) = O(1). In the case of negative cycle costs we have the following. The initial
digraph G, can be tested for a negative cycle either in O(n) sequential time, or in O(log nlog* n)
parallel time using O(n/lognlog*n) CREW PRAM processors, by results of [22]. Now, assume
that we want to modify the cost ¢(v,w) of an edge (v, w), to ¢/(v,w) in G,. Before running the
Update_Outerplanar algorithm, run the algorithm Query_Outerplanar to find the distance d(w,v).
If d(w,v)+ ¢'(v,w) < 0, then halt and announce not acceptance of this edge cost modification.
Otherwise, continue in the known way. Clearly, the above procedures for either testing the initial
digraph, or testing the acceptance of the edge cost modification, does not affect the resource bounds
of either our reprocessing or of our update algorithm, respectively.

4 Dynamic Algorithms for Planar Digraphs

The algorithms for maintaining all pairs shortest paths information in a planar digraph G are based
on the hammock decomposition idea and on the algorithms of the previous section. The prepro-
cessing algorithm for 7 is as follows: find a hammock decomposition of G into O(q) hammocks.
Construct local data structures for each hammock H using algorithm Pre_Outerplanar. Also, in
each hammock H construct convergent and divergent shortest path trees rooted at each attachment
vertex of H. Compress each hammock into a O(1)-sized graph such that the shortest paths between
its attachment vertices are preserved. This results into a sparse representative G4 of &, which is a
planar graph of size O(q). Finally, run the preprocessing algorithms of [11} or [4] for constructing a
data structure in G,. (From results of [4, 11, 14, 29] discussed in section 2 and lemmata of section
3 (with k(n) = O(1)), we have the preprocessing bounds stated in theorems 1 and 2.

A single-pair query between any two vertices v and z can be answered as follows (using the
above data structures). If v and z do not belong to the same hammock, then their distance
d(v,z) = min; ;{d(v,a;) + d(a;,a}) + d(a},2z)} where a; and a; respectively are the attachment
vertices of the hammocks in which v and z belong to. If both » and z belong to the same hammock
H, then note that the shortest path between them does not necessarily have to stay in H. Hence,
first compute (using algorithm Query_Outerplanar) their distance dg(v,z) inside H. After that
compute d;;(v, z) = min; j{d(v, a;)+d(a;,a;)+d(aj, z)}. Cleartly, d(v,z) = min{dg (v, z), dij(v, 2)}.
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In sequential computation we need O(q) time for querying in G;’s data structure [11] and O(logn)
time for querying in each hammock (lemma 3.3). In parallel computation, a distance query in G/y’s
data structure is answered in O(1) time. The query bounds, in theorems 1 and 2, follow.

The update algorithm is straightforward. Let e be the edge that its cost has been modified.
We have two data structures that should be updated. The first one concerns the hammock H
where e belongs to. This is done by the algorithm Update_Outerplanar. The second data structure
is that of the digraph G, and can be updated in O(log®¢) sequential time by [11], or in O(log? ¢)
parallel time using O(q?/logq) CREW PRAM processors by [4]. The algorithm for answering a
single-source query is based on a generalization of lemma 2.3 and for lack of space is given in the
appendix. The bounds of theorems 1 and 2 follow by the above discussion.

The case of negative edge costs is handled in a similar way with that of outerplanar digraphs.
The initial digraph can be tested for a negative cycle either in O(n + ¢?) sequential time, or in
O(log? n+log* ¢) parallel time using O(n+q¢%/log® ¢) CREW PRAM processors [22]. The procedure
for accepting or not an edge cost modification is similar to the one for outerplanar digraphs.

5 Extensions of our results and further applications

Our results can be extended to hold for any digraph with genus bounded by a function g(n) = o(n),
by the fact that the hammock decomposition technique applies to any digraph G [13, 22]. Actually,
the number of hammocks produced is a small constant factor times g(n) + ¢', where G is supposed
to be embedded on an orientable surface of genus g(n) such that all vertices are covered by ¢ of
the faces, and g(n), ¢’ are the minimum possible. (Note that the methods in [13, 22] do not require
such an embedding to be provided by the input in order to produce the hammock decomposition.)
If the digraph is provided with a separator decomposition, then all of our results hold as they are.
Otherwise, the bounds depending on ¢ (i.e. on the number of hammocks) are getting a little bit
larger, but they still compare favorably with either the results of [9], or by running the best off-line
algorithm from srcatch.

Another important application of our results here is the maintainance of the all pairs reach-
ability information in a planar digraph G. We treat the reachability problem as a degenerated
version of the shortest path problem. (Assign a weight of 1 to all edges in G. If d(2,v) # oo then
v is reachable from z.) The results of [33] provide fully dynamic algorithms for this problem. A
data structure can be constructed in O(nlogn) time using O(n) space. A reachability query is
answered in O(n?/3logn) time. Also in the same time the data structure can be updated after
an edge deletion. In case of an edge insertion, the data structure can be updated in O(nZ/ 3logn)
amortized time (which can be O(nlogn) in the worst case, i.e. equivalent to running the algorithm
from scratch). Our methods achieve the following bounds: (a) we can construct a data structure
in O(n + qlog q) time, using O(n) space. A query can be answered in O(logn + ¢) time, while an
update of the data structure after an edge deletion is done in O(logn + log®¢) time; (b) we can
construct a data structure in O(log? n +log* ¢) time using O(n + ¢*1%) CREW PRAM processors.
The space required is O(n + ¢%). A query can be answered in O(logn) time, while the data struc-
ture can be updated after an edge deletion in O(logn) time using O(logn + ¢!1?) CREW PRAM
processors. (The bounds in parallel computation come from results in [4, 22].)
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APPENDIX

A.1 Proofs

Proof (sketch) of lemma 2.1: First of all notice that all tentative separation pairs of G, are
separation edges, since G, is triangulated. Let H be the subgraph produced after the removal of
the ¢ separation pairs from Gy, 7 = 1,2. It is clear that if ¢ = 3 and the separation pairs belong
to the same face, then H cannot be further separated. Therefore, we assume that ¢ > 3 and the
c separation pairs do not belong to the same face of GG,. Suppose on the contrary that there is
no separation pair, separating the ¢ pairs. Now, H will consists of at least ¢ + 1 vertices. Since
G, is triangulated, it follows that there exists at least one edge in H connecting two nonconsec-
utive (according to their clockwise naming) vertices. But such an edge is a separation edge, a
contradiction. The sequential resource bound of the algorithm comes from results in [6]. For the
parallel implementation we have the following. Step 1 needs O(logn) time and O(n) processors
in either model [29]. The depth of the recursion in step 4 is O(log; . k(n)). Each recursion step
needs O(logn) time with O(n) CREW PRAM processors. (Assign one processor in every edge of
the graph and select the one which satisfies the suitable separation condition. In case of ties choose
one arbitrarily.) The bounds follow. Also note that at level ¢ of recursion, each component has size
at most O(e'n). Since the depth of the resursion is O(logy . k(n)), we have that no component has
size larger than O(n/k(n)).

Proof (sketch) of lemma 3.3: The correctness is clear by the description of the algorithm.



Searching S(G,), as well as its associated T trees takes in total O(logn) time by remark 2.1.
Let Q(n) be the time for computing the distances d(v,p1),d(v, ps),d(p1,2) and d(pz,z). Then
Q(n) = Q'(n) + O(logk(n)), where Q'(n) is the time to compute all distances d(v,=;). Q'(n)
satisfies the recurrence Q'(n) = Q'(n/k(n)) + O(log k(n)), which gives @'(n) = O(logn) and con-
sequently Q(n) = O(logn) for any k(n). Once we have decided (from the computation of the
distances) which is the correct compressed shortest path, we need O(L) time to output the original
one (as it was explained in the informal description of the algorithm). The bounds follow. W

A.2 The preprocessing algorithm for outerplanar digraphs

ALGORITHM Pre_Outerplanar(G,, k(n))
BEGIN
1. Find shortest path (edge labeling) information in G,.
2. Construct a separator tree S(G,) using algorithm Sep_Tree(G,, k(n)).
3. Compute the sparse representative 7.5 R(G,) as follows.
(* Let v be any child of r in r.Ts *)
(a) if v is a leaf in 7.Ts then Create SR(v.G)

else run step 3 recursively on each v.
(b) f(v).SR(G) = v.SR(G)Uv*.SR(G).
(¢) (* Let (py,p2) be the separation pair between v.5R(G) and v*.SR(G). *)
(d) for each separation vertex p attached to f(v).5R(G) do

DSP _Tree(v.S R(G), v*.SR(G), (p1,p2), p, f(v).SR(G)).

Exp.

PROCEDURE Create SR(z.G)

BEGIN

if z.level = d(k(n)) then compute convergent and divergent shortest path trees rooted at
the separation vertices attached to z.G. Let 2.SR(G) = z.G.

else
for each child y of z in S(G,) do
Create SR(y.G).
Aux_SR(y.G).
END.

PROCEDURE Aux_SR(y.G)
BEGIN
(* Let z,2° be the two children of y in y.Ts *)
1. if z is a leaf in y.T's then let 2.5 R(G) be its corresponding sparse representative.

else Aux.SR(z.G).

Aux_SR(z°.G).

2. f(2).SR(G) = 2.5R(G) U 2*.SR(G).
3. (* Let (p1,p2) be the separation pair between z.SR(G) and 2°.SR(G). *)

for each separation vertex p attached to f(z).SR(G) do

DSP _Tree(z.SR(G), z2°.SR(G), (p1, p2), p, f(2).SR(G)).
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4. if f(z) = y then
Store a pointer to f(z).SR(G) and generate a compressed version C'(f(z).5R(G)).
£(2).8R(G) = C(f(2).SR(G)).

END.

A.3 The single-pair query algorithm for outerplanar digraphs

ALGORITHM Query_Quterplanar(G,, v, z, k(n))
BEGIN

1. Search S(G,) (starting form the root) to find a node vg such that 5 separates v from z in
G,. Determine also those children »; and vy of vg such that v € v1.G and z € v,.G.

2. Search the tree vg.Ts (starting from the root) to find a node w such that: (i) the separation
pair w.p = (py, p2) separates v and z, and (ii) w.level is of minimum possible.

3. d(v,z) = min{d(v,p1) + d(p1, 2),d(v,p2) + d(p2, 2)}. (A similar expression holds for com-
puting the shortest path SP(v,z2).)

Computation of the shortest path or distance d(v,p1): (The computation of the other shortest
paths or distances is similar.) The steps of the computation will be given in a top-down fashion.
Let x.a;, 1 < 4 < 6, the separation vertices attached to .G, where @ is a tree node of either S(G,)
or a Tg tree.

d(v,p1) = miin{d(v, v1.6;) + d(vi.a;,p1)}

(a) Computation of d(v1.a;,p1): Let w' be that child of w, for which v;.a; € w'.SR(G). From
the preprocessing of the convergent shortest path tree rooted at p; in the graph w'.5R(G), output
d(vy.a;,p1) as well as the compressed shortest path C(SP(v.ai,p1)).

(b) Computation of d(v,vy.a;):

d(v,v1.0;) = min{d,, sp@(v,v1.a:), f{}i}g}{dvl sr(c)(v,v1.45)
J,

+d(v1.aj,v1.ax) + dy sr(q)(V1-@k, v1.0:) }}

(* CoMMENT: Note that there are at most 2 such pairs (a;,ax) and that d,, sr(g)(v1-ax,v1.0;) is
already known from the divergent shortest path tree rooted at vy.ay in v1.SR(G). *)

(b.1) Computation of d,, spr()y(v,v1.a;): This is done by the following procedure.
PROCEDURE D_Inside(d,, sr(g)(v; v1-4i))
BeGIN

1. Find the child u; of v; for which v € u1.G.

2. D Inside(d,, sp(e)(v; v1.ai)).

3. dy, sr(e)(v,v1-0;) = mini<j<e{du, sr(G) (v, 41.4;) + dy,_sr(a)(v1.a5,v1.0:)}.
(* CoMMENT: Alldistances (and compressed shortest paths) d,, sr()(u1-a5, v1.a;) are known from
the convergent shortest path tree rooted at vy.q; in v1.SR(G). *)
EnD.

(b.2) Computation of d(vy.a;,v1.ax) outside vy .S R(G):

(b.2.a) Inside vs.SR(G): Let p’ = (p},p}) be the separation pair associated with the root of
vs.SR(G) and let v € u.G, where u and u® are the two children of the root.

PROCEDURE D_Outside_Partial(d, ;. sr(a)(v1-a5,v1-ax))
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BEGIN
1. D_Outside_Partial(d, sr(q)(v1-a;, v1-ax))-

2. dyg spey(v1-aj,v1.a5) = min{d, sr(a)(v1-4;, vl.ak),min{du,sR(G)(vl.aj,p'l) +
dys sr(c) (1, P2) + du.sr(a) (P2, v1-0k), du.sr(c)(v1-a5, ) +
dys sr(c) (P2, P1) + du.sra)(P1, v1-ax)}}

END.
(b.2.b) General solution : Let R be the root of S(G,) and v € u.G, where u is a child of R.

PROCEDURE D_Outside_General(d(vy.a;, v1.at))
BEGIN
1. D_Outside_Partial(d,  sr(q)(v1-¢;, v1-ax))-

2. d(vy.a;,v1.05) = min{de.SR(G)(’U].aj,'Ul.(I,k),mill{de'SR(G)(’Ul.aj,’l)S'.H,Tn)+

D-Outside_General(df( .).SR(G (vq U, Vs.41)) +

dys.sR(q)(Vs-a1,v1.08)} }

END.
END. (* End of algorithm Query_Outerplanar. *)

A.4 The single-source query algorithm for planar digraphs

The algorithm for answering a query asking for the shortest path tree rooted at a specified vertex
s is based on a generalization of lemma 2.3. Let H be the hammock where s belongs to and let
a;, 1 <1i < 4 be its attachment vertices. Let G’ be a subgraph of G. A node ¢,; in DSP(a;,G") is
called critical with respect to s (s € V(H)) if: (i) d(s, a;) + d(ai, cq;) > d(s, a;) + d(a;, cq;), a; # a;,
and (ii) d(s,a;) + d(ai,z) < d(s, a;) + d(aj,z), where @ is the parent of ¢,; in DSP(a;, G). A node
¢s in DSP(s, H) is called crucial with respect to a; if: (i) d(s, a;) + d(a;, a;) + d(a;j, ¢;) < dp(s,cs),
a; # aj, and (ii) d(s, a;) + d(a;,a;) + d(aj,¢) < dg(s,z), where @ is the parent of ¢, in DSP(s, H).
It is not difficult to see that lemma 2.3 holds for any O(1) number of separation pairs (between G
and () along with the above generalized definitions of critical and crucial nodes. The algorithm
is as follows.

ALGORITHM Query_Planar DSP_Tree(G, s)
BEGIN
1. Compute DSP(s, H) and DSP(a;, (G — H) U {q;]j # i}).
2. Determine for each tree DSP(a;, (G — H)U {a;|j # i}) its critical nodes c,; with respect to

. Prune each DSP(a;,(G — H) U {g;|j # i}) at nodes c,,, resulting in trees T5.
. If a; € T (i # j), then find crucial nodes ¢, in DSP(s, /) with respect to a;.
. Prune DSP(s, H) at crucial nodes ¢;. Let the subtrees rooted at nodes ¢, be denoted as 7.
6. Graft T; at its associated node a; in DSP(s, H) (for those T; which this is applicable). Let,
the new tree resulted, be denoted by DSP(s, H)U T;.
7. Arrange the nodes of each T in a DSP way rooted at their associated a; node. This is done
in the same way as it is described in the proof of lemma 2.3. Hence, new trees T}, are created.
8. Graft each T, at its associated node a; in DSP(s, H)U T3.

new

(S SNt
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END.
Lemma: Algorithm Query_Planar-DSP_Tree constructs a shortest path tree rooted at a specified

vertez of an n-vertex planar digraph in O(n + ¢\/loglogq) time using a single processor, in se-
quential computation. Algorithm Query-Planar_DSP_Tree, in either model of parallel computation,

constructs a shortest path tree rooted at a specified verter of an n-vertex planar digraph in O(n)
time using a single processor.

Proof (sketch): By generalization of lemma 2.3 and [11]. In parallel computation the algorithm
Query_Planar DSP _Tree runs in O(n) time using a single processor, since the trees DSP(a;, (G —
H)U {a;|j # i}) have already been computed (or updated) from the preprocessing (updating) of
G. i
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