1,589 research outputs found
On Factor Universality in Symbolic Spaces
The study of factoring relations between subshifts or cellular automata is
central in symbolic dynamics. Besides, a notion of intrinsic universality for
cellular automata based on an operation of rescaling is receiving more and more
attention in the literature. In this paper, we propose to study the factoring
relation up to rescalings, and ask for the existence of universal objects for
that simulation relation. In classical simulations of a system S by a system T,
the simulation takes place on a specific subset of configurations of T
depending on S (this is the case for intrinsic universality). Our setting,
however, asks for every configurations of T to have a meaningful interpretation
in S. Despite this strong requirement, we show that there exists a cellular
automaton able to simulate any other in a large class containing arbitrarily
complex ones. We also consider the case of subshifts and, using arguments from
recursion theory, we give negative results about the existence of universal
objects in some classes
Subshifts, MSO Logic, and Collapsing Hierarchies
We use monadic second-order logic to define two-dimensional subshifts, or
sets of colorings of the infinite plane. We present a natural family of
quantifier alternation hierarchies, and show that they all collapse to the
third level. In particular, this solves an open problem of [Jeandel & Theyssier
2013]. The results are in stark contrast with picture languages, where such
hierarchies are usually infinite.Comment: 12 pages, 5 figures. To appear in conference proceedings of TCS 2014,
published by Springe
Online Popularity and Topical Interests through the Lens of Instagram
Online socio-technical systems can be studied as proxy of the real world to
investigate human behavior and social interactions at scale. Here we focus on
Instagram, a media-sharing online platform whose popularity has been rising up
to gathering hundred millions users. Instagram exhibits a mixture of features
including social structure, social tagging and media sharing. The network of
social interactions among users models various dynamics including
follower/followee relations and users' communication by means of
posts/comments. Users can upload and tag media such as photos and pictures, and
they can "like" and comment each piece of information on the platform. In this
work we investigate three major aspects on our Instagram dataset: (i) the
structural characteristics of its network of heterogeneous interactions, to
unveil the emergence of self organization and topically-induced community
structure; (ii) the dynamics of content production and consumption, to
understand how global trends and popular users emerge; (iii) the behavior of
users labeling media with tags, to determine how they devote their attention
and to explore the variety of their topical interests. Our analysis provides
clues to understand human behavior dynamics on socio-technical systems,
specifically users and content popularity, the mechanisms of users'
interactions in online environments and how collective trends emerge from
individuals' topical interests.Comment: 11 pages, 11 figures, Proceedings of ACM Hypertext 201
Quasiperiodicity and non-computability in tilings
We study tilings of the plane that combine strong properties of different
nature: combinatorial and algorithmic. We prove existence of a tile set that
accepts only quasiperiodic and non-recursive tilings. Our construction is based
on the fixed point construction; we improve this general technique and make it
enforce the property of local regularity of tilings needed for
quasiperiodicity. We prove also a stronger result: any effectively closed set
can be recursively transformed into a tile set so that the Turing degrees of
the resulted tilings consists exactly of the upper cone based on the Turing
degrees of the later.Comment: v3: the version accepted to MFCS 201
The FARMSCAPE approach to farming systems research
Abstract From six years of participatory action research has emerged Farmers', Advisers' and Researchers' Monitoring, Simulation. Communication And Performance Evaluation (FARMSCAPE) as an approach for supporting farmers' management of dryland crop production. In contrast to the strategy of producing decision support software for farmers, FARMSCAPE features simulation-aided discussions about management among farmers, advisers, and (sometimes) researchers. The key is a capability to flexibly simulate the consequences of a wide range of crop and cropland management alternatives in a variable climate at a paddock scale using local soil and weather data. The high level of interest among farmers has led to a current focus on transfer of the technology to agricultural service providers. Keywords: Farming systems, on-farm, simulation, soil monitoring, action research The term "farming systems research" is most commonly used in Australia to mean "research on bio-physical sub-systems aimed at improving systems of farming". Research methodology tends to be a flexible and pragmatic use of formal experimental design and statistical analysis. Experiments are designed to represent aspects of farming sufficiently realistically for results to be meaningful to farmers and advisers but without unnecessarily or overly straining professional standards for methodology concerning making valid comparisons with adequate confidence. In the interest of the former, experiments are often located on commercial farms, and, increasingly, with farmers. A second established way of interpreting the term "farming systems research" is "systems research which is about farming". Here the emphasis is the application to farming of systems concepts and methodologies that have evolved over the past 50 years, mainly outside agriculture. This paradigm has been termed "systems agriculture" (1). Emphasis here is on approaches to learning/ research/ intervention when the system under study does not lend itself readily to scientific experimentation. Feasibility of the latter declines with increases in scale and/or, complexity and temporal variability. Two pools of methodological resources for addressing such systems are available—often termed "hard" and "soft" approaches. "Hard" systems approaches have, at their core, mathematical models of the systems of interest designed to represent the essential aspects of function in relation to environment. But the hard lesson in the main stream of the hard systems movement has been that the approach turns out to be appropriate only to those aspects of systems that are not complicated by people with purposes and freedom of choice (3). The fact that the specific nature of a farm system substantially reflects the design and management efforts of a farmer means that a "soft" systems approach, eg participative action research, should enhance the usefulness and impact of the research on real farming. McCown, RL; Carberry, PS; Foale, MA; Hochman, Z; Coutts, JA; Dalgliesh, NP (1998) The FARMSCAPE approach to farming systems research Proc. 9th Aust. Agron. Conf., Wagga Wagga (1998) 633-636
Emotional intelligence buffers the effect of physiological arousal on dishonesty
We studied the emotional processes that allow people to balance two competing desires: benefitting from dishonesty and keeping a positive self-image. We recorded physiological arousal (skin conductance and heart rate) during a computer card game in which participants could cheat and fail to report a certain card when presented on the screen to avoid losing their money. We found that higher skin conductance corresponded to lower cheating rates. Importantly, emotional intelligence regulated this effect; participants with high emotional intelligence were less affected by their physiological reactions than those with low emotional intelligence. As a result, they were more likely to profit from dishonesty. However, no interaction emerged between heart rate and emotional intelligence. We suggest that the ability to manage and control emotions can allow people to overcome the tension between doing right or wrong and license them to bend the rules
Measurement of the cross-section ratio sigma_{psi(2S)}/sigma_{J/psi(1S)} in deep inelastic exclusive ep scattering at HERA
The exclusive deep inelastic electroproduction of and
at an centre-of-mass energy of 317 GeV has been studied with the ZEUS
detector at HERA in the kinematic range GeV,
GeV and GeV, where is the photon virtuality, is the
photon-proton centre-of-mass energy and is the squared four-momentum
transfer at the proton vertex. The data for GeV were taken in
the HERA I running period and correspond to an integrated luminosity of 114
pb. The data for GeV are from both HERA I and HERA II
periods and correspond to an integrated luminosity of 468 pb. The decay
modes analysed were and for the
and for the . The cross-section ratio
has been measured as a function of
and . The results are compared to predictions of QCD-inspired
models of exclusive vector-meson production.Comment: 24 pages, 8 figure
Combined QCD and electroweak analysis of HERA data
A simultaneous fit of parton distribution functions (PDFs) and electroweak
parameters to HERA data on deep inelastic scattering is presented. The input
data are the neutral current and charged current inclusive cross sections which
were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In
addition, the polarisation of the electron beam was taken into account for the
ZEUS data recorded between 2004 and 2007. Results on the vector and
axial-vector couplings of the Z boson to u- and d-type quarks, on the value of
the electroweak mixing angle and the mass of the W boson are presented. The
values obtained for the electroweak parameters are in agreement with Standard
Model predictions.Comment: 32 pages, 10 figures, accepted by Phys. Rev. D. Small corrections
from proofing process and small change to Fig. 12 and Table
- …