5,631 research outputs found

    A remark on zeta functions of finite graphs via quantum walks

    Full text link
    From the viewpoint of quantum walks, the Ihara zeta function of a finite graph can be said to be closely related to its evolution matrix. In this note we introduce another kind of zeta function of a graph, which is closely related to, as to say, the square of the evolution matrix of a quantum walk. Then we give to such a function two types of determinant expressions and derive from it some geometric properties of a finite graph. As an application, we illustrate the distribution of poles of this function comparing with those of the usual Ihara zeta function.Comment: 14 pages, 1 figur

    Mitochondrial haplogroups associated with elite Japanese athlete status

    Get PDF
    Purpose It has been hypothesised that certain mitochondrial haplogroups, which are defined by the presence of a characteristic cluster of tightly linked mitochondrial DNA polymorphisms, would be associated with elite Japanese athlete status. To examine this hypothesis, the frequencies of mitochondrial haplogroups found in elite Japanese athletes were compared with those in the general Japanese population. Methods Subjects comprised 139 Olympic athletes (79 endurance/middle-power athletes (EMA), 60 sprint/power athletes (SPA)) and 672 controls (CON). Two mitochondrial DNA fragments containing the hypervariable sequence I (m16024-m16383) of the major non-coding region and the polymorphic site at m. 5178C>A within the NADH dehydrogenase subunit 2 gene were sequenced, and subjects were classified into 12 major mitochondrial haplogroups (ie, F, B, A, N9a, N9b, M7a, M7b, M*, G2, G1, D5 or D4). The mitochondrial haplogroup frequency differences among EMA, SPA and CON were then examined. Results EMA showed an excess of haplogroup G1 (OR 2.52, 95% CI 1.05 to 6.02, p=0.032), with 8.9% compared with 3.7% in CON, whereas SPA displayed a greater proportion of haplogroup F (OR 2.79, 95% CI 1.28 to 6.07, p=0.007), with 15.0% compared with 6.0% in CON. Conclusions The results suggest that mitochondrial haplogroups G1 and F are associated with elite EMA and SPA status in Japanese athletes, respectivel

    Group Averaging for de Sitter free fields

    Full text link
    Perturbative gravity about global de Sitter space is subject to linearization-stability constraints. Such constraints imply that quantum states of matter fields couple consistently to gravity {\it only} if the matter state has vanishing de Sitter charges; i.e., only if the state is invariant under the symmetries of de Sitter space. As noted by Higuchi, the usual Fock spaces for matter fields contain no de Sitter-invariant states except the vacuum, though a new Hilbert space of de Sitter invariant states can be constructed via so-called group-averaging techniques. We study this construction for free scalar fields of arbitrary positive mass in any dimension, and for linear vector and tensor gauge fields in any dimension. Our main result is to show in each case that group averaging converges for states containing a sufficient number of particles. We consider general NN-particle states with smooth wavefunctions, though we obtain somewhat stronger results when the wavefunctions are finite linear combinations of de Sitter harmonics. Along the way we obtain explicit expressions for general boost matrix elements in a familiar basis.Comment: 33 pages, 2 figure

    Decay of the free-theory vacuum of scalar field theory in de Sitter spacetime in the interaction picture

    Full text link
    A free-theory vacuum state of an interacting field theory, e.g. quantum gravity, is unstable at tree level in general due to spontaneous emission of Fock-space particles in any spacetime with no global timelike Killing vectors, such as de Sitter spacetime, in the interaction picture. As an example, the rate of spontaneous emission of Fock-space particles is calculated in phi^4 theory in de Sitter spacetime. It is possible that this apparent spontaneous emission does not correspond to any physical processes because the states are not evolved by the true Hamiltonian in the interaction picture. Nevertheless, the constant spontaneous emission of Fock-space particles in the interaction picture clearly demonstrates that the in- and out-vacuum states are orthogonal to each other as emphasized by Polyakov and that the in-out perturbation theory, which presupposes some overlap between these two vacuum states, is inadequate. Other possible implications of apparent vacuum instability of this kind in the interaction picture are also discussed.Comment: title changed, 7 page

    Transmission of Systemic AA Amyloidosis in Animals

    Get PDF
    Amyloidoses are a group of protein-misfolding disorders that are characterized by the deposition of amyloid fibrils in organs and/or tissues. In reactive amyloid A (AA) amyloidosis, serum AA (SAA) protein forms deposits in mice, domestic and wild animals, and humans that experience chronic inflammation. AA amyloid fibrils are abnormal beta-sheet-rich forms of the serum precursor SAA, with conformational changes that promote fibril formation. Extracellular deposition of amyloid fibrils causes disease in affected animals. Recent findings suggest that AA amyloidosis could be transmissible. Similar to the pathogenesis of transmissible prion diseases, amyloid fibrils induce a seeding-nucleation process that may lead to development of AA amyloidosis. We review studies of possible transmission in bovine, avian, mouse, and cheetah AA amyloidosis.ArticleVETERINARY PATHOLOGY. 51(2):363-371 (2014)journal articl

    Stochastic to deterministic crossover of fractal dimension for a Langevin equation

    Full text link
    Using algorithms of Higuchi and of Grassberger and Procaccia, we study numerically how fractal dimensions cross over from finite-dimensional Brownian noise at short time scales to finite values of deterministic chaos at longer time scales for data generated from a Langevin equation that has a strange attractor in the limit of zero noise. Our results suggest that the crossover occurs at such short time scales that there is little chance of finite-dimensional Brownian noise being incorrectly identified as deterministic chaos.Comment: 12 pages including 3 figures, RevTex and epsf. To appear Phys. Rev. E, April, 199
    corecore