20 research outputs found

    Variation in Macrophage Migration Inhibitory Factor [MIF] immunoreactivity duringbovine gestation.

    No full text
    Macrophage Migration Inhibitory Factor (MIF) is a proinflammatory cytokine involved in several aspects of the immune response. MIF appears to play important roles in materno-fetal immuno-tolerance during placental establishment, modulation and growth as studied in epitheliochorial porcine and hemochorial human and mouse placentae. Here we studied the bovine placenta being multiplex, villous and synepitheliochorial with a low degree of invasion, to see if MIF could be involved. Placental tissues sampled from 12 cows at 9 stages of gestation (days 18-250), and endometrial tissues from two non-pregnant animals were processed for immunohistochemistry. Bovine MIF was detected by Western blot using anti-human MIF monoclonal antibodies. An immunoreactive band of approximately 12kDa confirmed similarities between bovine and human MIFs. Compared to the non-pregnant stage with very faint staining, the caruncular epithelium during pregnancy showed stronger staining for MIF. The intercaruncular epithelium in non-pregnant endometrium showed some reaction apically with increasing intensity at uterine gland openings; in contrast, at day 18 of gestation this staining was markedly increased. During gestation both caruncular and trophoblast epithelium of the placentomes were positive with different intensity in relation to the gestational stage. In the uterine glands, some strongly stained cells were present. The mature binucleated trophoblast giant cells were negative throughout pregnancy. During reestablishment of vascularisation, the vasculature in the caruncular area showed MIF reactivity. While supporting involvement of MIF in different placental types, the spatio-temporal variation in the bovine placenta suggests a regulatory role for MIF mainly in the interhemal barrier and during vascular development

    Changes in endometrial ezrin and cytokeratin 18 expression during bovine implantation and in caruncular endometrial spheroids in vitro

    Full text link
    Introduction: The feto-maternal interface during bovine implantation was studied in vivo and using three-dimensional bovine endometrial (BCECph) and trophoblast spheroids (CCS), each with underlying fibroblasts. Methods: The expression of ezrin and cytokeratin 18 (CK18) was analyzed via immunohistochemistry (IHC), RT-PCR and western blotting in bovine endometrium (GD 18-44) with in vivo (VIVO) and in vitro- produced embryos (VITRO). BCECph were stimulated with cotyledon-conditioned media (CCM) and analyzed by TEM/SEM and IHC. CCS were stained (IHC) for TGC markers, to test if spheroidal trophoblast cells had differentiated into TGC. Results: At GD 20, caruncular epithelium (CE) and uterine glands (UG) showed a loss of cytosolic ezrin and CK18 followed by a complete loss of both proteins. At GD 35 both reappeared in CE and UG. The endometrial expression pattern did not differ between VIVO and VITRO. RT-PCR and western blotting confirmed the presence of ezrin and CK18. All spheroids had an outer polarized, cytokeratin and ezrin positive epithelium (CE or trophoblast) with apical microvilli. Stimulation of BCECph with CCM induced similar changes in ezrin expression as observed in endometrial tissue. However, no ultrastructural alterations were found by transmission electron microscopy. Absence of TGC-specific glycoproteins in CCS indicated that TGC differentiation was not induced by three-dimensional culture conditions. Discussion: Ezrin and CK18 are downregulated during implantation in cattle. The expression changes represent a temporal depolarization, which could be important for an establishment of bovine preg- nancy. Our in vitro experiments demonstrate that the trophoblast could contribute to this change in vivo

    Permissiveness of bovine epithelial cells from lung, intestine, placenta and udder for infection with Coxiella burnetii

    No full text
    International audienceRuminants are the main source of human infections with the obligate intracellular bacterium Coxiella (C.) burnetii. Infected animals shed high numbers of C. burnetii by milk, feces, and birth products. In goats, shedding by the latter route coincides with C. burnetii replication in epithelial (trophoblast) cells of the placenta, which led us to hypothesize that epithelial cells are generally implicated in replication and shedding of C. burnetii. We therefore aimed at analyzing the interactions of C. burnetii with epithelial cells of the bovine host (1) at the entry site (lung epithelium) which govern host immune responses and (2) in epithelial cells of gut, udder and placenta decisive for the quantity of pathogen excretion. Epithelial cell lines [PS (udder), FKD-R 971 (small intestine), BCEC (maternal placenta), F3 (fetal placenta), BEL-26 (lung)] were inoculated with C. burnetii strains Nine Mile I (NMI) and NMII at different cultivation conditions. The cell lines exhibited different permissiveness for C. burnetii. While maintaining cell viability, udder cells allowed the highest replication rates with formation of large cell-filling Coxiella containing vacuoles. Intestinal cells showed an enhanced susceptibility to invasion but supported C. burnetii replication only at intermediate levels. Lung and placental cells also internalized the bacteria but in strikingly smaller numbers. In any of the epithelial cells, both Coxiella strains failed to trigger a substantial IL-1β, IL-6 and TNF-α response. Epithelial cells, with mammary epithelial cells in particular, may therefore serve as a niche for C. burnetii replication in vivo without alerting the host’s immune response
    corecore