2,308 research outputs found
Volume and surface propellant heating in an electrothermal radio-frequency plasma micro-thruster
The temporal evolution of neutral gas temperature over the first 5 min of operation for an electrothermal radio-frequency micro-thruster with nitrogen (N2) propellant was measured using rovibrational band matching of the second positive N2 system. Three distinct periods of gas heating were identified with time constants of τ 1 = 8 × 10⁻⁵ s, τ 2 = 8 s, and τ 3 = 100 s. The fast heating (τ 1) is attributed to volumetric heating processes within the discharge driven by ion-neutral collisions. The slow heating (τ 3) is from ion neutralization and vibrational de-excitation on the walls creating wall heating. The intermediate heating mechanism (τ 2) is yet to be fully identified although some theories are suggested.This research was partially funded by the Australian
Space Research Program (APT project) and the Australian
Research Council Discovery Project (No. DP140100571)
IFN-γ-producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain.
It is well established that IFN-γ is required for the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the temporal and tissue-specific cellular sources of IFN-γ during P. berghei ANKA infection have not been investigated, and it is not known whether IFN-γ production by a single cell type in isolation can induce cerebral pathology. In this study, using IFN-γ reporter mice, we show that NK cells dominate the IFN-γ response during the early stages of infection in the brain, but not in the spleen, before being replaced by CD4(+) and CD8(+) T cells. Importantly, we demonstrate that IFN-γ-producing CD4(+) T cells, but not innate or CD8(+) T cells, can promote the development of ECM in normally resistant IFN-γ(-/-) mice infected with P. berghei ANKA. Adoptively transferred wild-type CD4(+) T cells accumulate within the spleen, lung, and brain of IFN-γ(-/-) mice and induce ECM through active IFN-γ secretion, which increases the accumulation of endogenous IFN-γ(-/-) CD8(+) T cells within the brain. Depletion of endogenous IFN-γ(-/-) CD8(+) T cells abrogates the ability of wild-type CD4(+) T cells to promote ECM. Finally, we show that IFN-γ production, specifically by CD4(+) T cells, is sufficient to induce expression of CXCL9 and CXCL10 within the brain, providing a mechanistic basis for the enhanced CD8(+) T cell accumulation. To our knowledge, these observations demonstrate, for the first time, the importance of and pathways by which IFN-γ-producing CD4(+) T cells promote the development of ECM during P. berghei ANKA infection
Ultrathin epitaxial Fe films in vicinal GaAs(001): A study by spin-resolved photoelectron spectroscopy
Thin epitaxial Fe films have been grown on vicinal GaAs(001) substrates and their remanent magnetic properties and the degree of substrate atom diffusion investigated using synchrotron-based photoelectron spectroscopy. The vicinal Fe films, though exhibiting greater As diffusion than their singular homologues, displayed better film quality both from the structural and the magnetic points of view. The spin-resolved valence spectra of the vicinal films resemble those for crystalline bulk Fe at lower film thicknesses than for singular films
Large Magellanic Cloud Planetary Nebula Morphology: Probing Stellar Populations and Evolution
Planetary Nebulae (PNe) in the Large Magellanic Cloud (LMC) offer the unique
opportunity to study both the Population and evolution of low- and
intermediate-mass stars, by means of the morphological type of the nebula.
Using observations from our LMC PN morphological survey, and including images
available in the HST Data Archive, and published chemical abundances, we find
that asymmetry in PNe is strongly correlated with a younger stellar Population,
as indicated by the abundance of elements that are unaltered by stellar
evolution (Ne, Ar, S). While similar results have been obtained for Galactic
PNe, this is the first demonstration of the relationship for extra-galactic
PNe. We also examine the relation between morphology and abundance of the
products of stellar evolution. We found that asymmetric PNe have higher
nitrogen and lower carbon abundances than symmetric PNe. Our two main results
are broadly consistent with the predictions of stellar evolution if the
progenitors of asymmetric PNe have on average larger masses than the
progenitors of symmetric PNe. The results bear on the question of formation
mechanisms for asymmetric PNe, specifically, that the genesis of PNe structure
should relate strongly to the Population type, and by inference the mass, of
the progenitor star, and less strongly on whether the central star is a member
of a close binary system.Comment: The Astrophysical Journal Letters, in press 4 figure
Detection of peptidases in Trypanosoma cruzi epimastigotes using chromogenic and fluorogenic substrates
Detergent extracts of Trypanosoma cruzi epimastigotes catalysed the hydrolysis of a range of amino-acyl and peptidyl p-nitro-anilides and aminomethylcoumarins. At least three enzymes were detected that cleave Z-Phe-Arg-MCA. Two of these were optimally active at alkaline pH, the other at pH 4·0. Of the two enzymes with alkaline pH optima, one was a cysteine peptidase and was unable to cleave Bz-Arg-MCA readily, whilst the other cleaved Bz-Arg-MCA and was inhibited by diisopropyl fluorophosphate. The acidic enzyme was similar to cathespin L of other eukayrotes with respect to its pH profile, substrate-specificity and inhibitor-sensitivity. Evidence was presented that epimastigotes contain a cysteine-type dipeptidyl aminopeptidase, one or more aminopeptidases, and a serine peptidase that cleaves Boc-Ala-Ala-pNA. Digitonin solubilization of the activities from cells supports the hypothesis that the cathespin L-like enzyme and the dipeptidyl aminopeptidase are lysosomal, whilst the Bz-Arg-MCA hydrolase, the aminopeptidases and the Boc-Ala-Ala-pNA serine peptidase are cytosoli
Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function
Peripheral processes that mediate beneficial effects of exercise on the brain remain sparsely explored. Here, we show that a muscle secretory factor, cathepsin B (CTSB) protein, is important for the cognitive and neurogenic benefits of running. Proteomic analysis revealed elevated levels of CTSB in conditioned medium derived from skeletal muscle cell cultures treated with AMP-kinase agonist AICAR. Consistently, running increased CTSB levels in mouse gastrocnemius muscle and plasma. Furthermore, recombinant CTSB application enhanced expression of brain-derived neurotrophic factor (BDNF) and doublecortin (DCX) in adult hippocampal progenitor cells through a mechanism dependent on the multifunctional protein P11. In vivo, in CTSB knockout (KO) mice, running did not enhance adult hippocampal neurogenesis and spatial memory function. Interestingly, in Rhesus monkeys and humans, treadmill exercise elevated CTSB in plasma. In humans, changes in CTSB levels correlated with fitness and hippocampus-dependent memory function. Our findings suggest CTSB as a mediator of effects of exercise on cognition
Arf6 determines tissue architecture by stabilizing intercellular adhesion
Correct cell shape is indispensable for tissue architecture, with cell shape being determined by cortical actin and surface adhesion. The role of adhesion in remodeling tissue is to counteract the deformation of cells by force, resulting from actomyosin contractility, and to maintain tissue integrity. The dynamics of this adhesion is critical to the processes of cell shape formation and maintenance. Here, we show that the trafficking molecule, Arf6, has a direct impact on cell elongation, by acting to stabilize E-cadherin-based adhesion complexes at the cell surface, in addition to its canonical role in endocytosis. We demonstrate that these functions of Arf6 are dependent on the molecule Flotillin1, which recruits Arf6 to the plasma membrane. Our data suggest that Arf6 and Flotillin1 operate in a pathway distinct from clathrin-mediated endocytosis. Altogether, we demonstrate that Arf6- and Flotillin1-dependent regulation of the dynamics of cell adhesion contributes to molding tissue in vivo
Common Alzheimer's disease risk variant within the CLU gene affects white matter microstructure in young adults
There is a strong genetic risk for late-onset Alzheimer's disease (AD), but so far few gene variants have been identified that reliably contribute to that risk. A newly confirmed genetic risk allele C of the clusterin (CLU) gene variant rs11136000 is carried by similar to 88% of Caucasians. The C allele confers a 1.16 greater odds of developing late-onset AD than the T allele. AD patients have reductions in regional white matter integrity. We evaluated whether the CLU risk variant was similarly associated with lower white matter integrity in healthy young humans. Evidence of early brain differences would offer a target for intervention decades before symptom onset. We scanned 398 healthy young adults (mean age, 23.6 +/- 2.2 years) with diffusion tensor imaging, a variation of magnetic resonance imaging sensitive to white matter integrity in the living brain. We assessed genetic associations using mixed-model regression at each point in the brain to map the profile of these associations with white matter integrity. Each Callele copy of the CLU variant was associated with lower fractional anisotropy-a widely accepted measure of white matter integrity-in multiple brain regions, including several known to degenerate in AD. These regions included the splenium of the corpus callosum, the fornix, cingulum, and superior and inferior longitudinal fasciculi in both brain hemispheres. Young healthy carriers of the CLU gene risk variant showed a distinct profile of lower white matter integrity that may increase vulnerability to developing AD later in life
Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death
The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer. Cell Death and Disease (2010) 1, e9; doi:10.1038/cddis.2009.11; published online 14 January 201
Impactful Mentoring of Women Graduate Students: Guiding the Development of Leadership Behaviors
Women graduate students continue to express interest in developing as leaders and are looking to the university to provide support for this endeavor. In classroom discussions about leadership development, women graduate students indicate strong desire for professional mentoring for leadership development. Yet, there are no uniform ideas about what mentors should do or how mentors should support women graduate students. The need for mentoring is supported in the research literature. Bowling (2018) asserts that sustainable female leadership is best supported through mentorship. Bowling (2018) further explains that mentorship is a critical component of preparing women for the workplace and continued professional development. Impactful mentorship is positive, mutual and reciprocal (Ragins, 2011). Ragins (2011) recognized that expertise fluidity among mentoring partners influences the quality of the mentoring relationship. Johnson and Smith (2018) contend that mentoring is not about rescuing women but is about building positive structures in which women can grow and thrive. The purpose of this study is to explore perspectives of women graduate students about what mentoring is needed to guide leadership development
- …
