5 research outputs found

    The genetics of myopia

    Get PDF
    Myopia is the most common eye condition worldwide and its prevalence is increasing. While changes in environment, such as time spent outdoors, have driven myopia rates, within populations myopia is highly heritable. Genes are estimated to explain up to 80% of the variance in refractive error. Initial attempts to identify myopia genes relied on family studies using linkage analysis or candidate gene approaches with limited progress. More genome-wide association study (GWAS) approaches have taken over, ultimately resulting in the identification of hundreds of genes for refractive error and myopia, providing new insights into its molecular machinery. These studies showed myopia is a complex trait, with many genetic variants of small effect influencing retinal signaling, eye growth and the normal process of emmetropization. The genetic architecture and its molecular mechanisms are still to be clarified and while genetic risk score prediction models are improving, this knowledge must be expanded to have impact on clinical practice

    Association between polygenic risk score and risk of myopia

    No full text
    Importance Myopia is a leading cause of untreatable visual impairment and is increasing in prevalence worldwide. Interventions for slowing childhood myopia progression have shown success in randomized clinical trials; hence, there is a need to identify which children would benefit most from treatment intervention. Objectives To examine whether genetic information alone can identify children at risk of myopia development and whether including a child’s genetic predisposition to educational attainment is associated with improved genetic prediction of the risk of myopia. Design, Setting, and Participants Meta-analysis of 3 genome-wide association studies (GWAS) including a total of 711 984 individuals. These were a published GWAS for educational attainment and 2 GWAS for refractive error in the UK Biobank, which is a multisite cohort study that recruited participants between January 2006 and October 2010. A polygenic risk score was applied in a population-based validation sample examined between September 1998 and September 2000 (Avon Longitudinal Study of Parents and Children [ALSPAC] mothers). Data analysis was performed from February 2018 to May 2019. Main Outcomes and Measures The primary outcome was the area under the receiver operating characteristic curve (AUROC) in analyses for predicting myopia, using noncycloplegic autorefraction measurements for myopia severity levels of less than or equal to −0.75 diopter (D) (any), less than or equal to −3.00 D (moderate), or less than or equal to −5.00 D (high). The predictor variable was a polygenic risk score (PRS) derived from genome-wide association study data for refractive error (n = 95 619), age of onset of spectacle wear (n = 287 448), and educational attainment (n = 328 917). Results A total of 383 067 adults aged 40 to 69 years from the UK Biobank were included in the new GWAS analyses. The PRS was evaluated in 1516 adults aged 24 to 51 years from the ALSPAC mothers cohort. The PRS had an AUROC of 0.67 (95% CI, 0.65-0.70) for myopia, 0.75 (95% CI, 0.70-0.79) for moderate myopia, and 0.73 (95% CI, 0.66-0.80) for high myopia. Inclusion in the PRS of information associated with genetic predisposition to educational attainment marginally improved the AUROC for myopia (AUROC, 0.674 vs 0.668; P = .02), but not those for moderate and high myopia. Individuals with a PRS in the top 10% were at 6.1-fold higher risk (95% CI, 3.4–10.9) of high myopia. Conclusions and Relevance A personalized medicine approach may be feasible for detecting very young children at risk of myopia. However, accuracy must improve further to merit uptake in clinical practice; currently, cycloplegic autorefraction remains a better indicator of myopia risk (AUROC, 0.87).</p

    5-Oxo-hexahydroquinoline: an attractive scaffold with diverse biological activities

    No full text
    corecore