6,703 research outputs found
Evaluating the application of neural networks and fundamental analysis in the Australian Stockmarket
Matrix product states for anyonic systems and efficient simulation of dynamics
Matrix product states (MPS) have proven to be a very successful tool to study
lattice systems with local degrees of freedom such as spins or bosons.
Topologically ordered systems can support anyonic particles which are labeled
by conserved topological charges and collectively carry non-local degrees of
freedom. In this paper we extend the formalism of MPS to lattice systems of
anyons. The anyonic MPS is constructed from tensors that explicitly conserve
topological charge. We describe how to adapt the time-evolving block decimation
(TEBD) algorithm to the anyonic MPS in order to simulate dynamics under a local
and charge-conserving Hamiltonian. To demonstrate the effectiveness of anyonic
TEBD algorithm, we used it to simulate (i) the ground state (using imaginary
time evolution) of an infinite 1D critical system of (a) Ising anyons and (b)
Fibonacci anyons both of which are well studied, and (ii) the real time
dynamics of an anyonic Hubbard-like model of a single Ising anyon hopping on a
ladder geometry with an anyonic flux threading each island of the ladder. Our
results pertaining to (ii) give insight into the transport properties of
anyons. The anyonic MPS formalism can be readily adapted to study systems with
conserved symmetry charges, as this is equivalent to a specialization of the
more general anyonic case.Comment: 18 pages, 15 figue
Swift observations of the 2015 outburst of AG Peg -- from slow nova to classical symbiotic outburst
Symbiotic stars often contain white dwarfs with quasi-steady shell burning on
their surfaces. However, in most symbiotics, the origin of this burning is
unclear. In symbiotic slow novae, however, it is linked to a past thermonuclear
runaway. In June 2015, the symbiotic slow nova AG Peg was seen in only its
second optical outburst since 1850. This recent outburst was of much shorter
duration and lower amplitude than the earlier eruption, and it contained
multiple peaks -- like outbursts in classical symbiotic stars such as Z And. We
report Swift X-ray and UV observations of AG Peg made between June 2015 and
January 2016. The X-ray flux was markedly variable on a time scale of days,
particularly during four days near optical maximum, when the X-rays became
bright and soft. This strong X-ray variability continued for another month,
after which the X-rays hardened as the optical flux declined. The UV flux was
high throughout the outburst, consistent with quasi-steady shell burning on the
white dwarf. Given that accretion disks around white dwarfs with shell burning
do not generally produce detectable X-rays (due to Compton-cooling of the
boundary layer), the X-rays probably originated via shocks in the ejecta. As
the X-ray photo-electric absorption did not vary significantly, the X-ray
variability may directly link to the properties of the shocked material. AG
Peg's transition from a slow symbiotic nova (which drove the 1850 outburst) to
a classical symbiotic star suggests that shell burning in at least some
symbiotic stars is residual burning from prior novae.Comment: Accepted by MNRAS 23 June 2016. Manuscript submitted in original form
5 April 201
Traces of Thermalization from Transverse Momentum Fluctuations in Nuclear Collisions
Scattering of particles produced in Au+Au collisions at RHIC can wrestle the
system into a state near local thermal equilibrium. I illustrate how
measurements of the centrality dependence of the mean transverse momentum and
its fluctuations can exhibit this thermalization.Comment: 4 pages, 2 eps figures, final version to appear in PR
Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: an eddy covariance study
Coralline algal (maerl) beds are widespread, slow-growing, structurally complex perennial habitats that support high biodiversity, yet are significantly understudied compared to seagrass beds or kelp forests. We present the first eddy covariance (EC) study on a live maerl bed, assessing the community benthic gross primary productivity (GPP), respiration (R), and net ecosystem metabolism (NEM) derived from diel EC time series collected during 5 seasonal measurement campaigns in temperate Loch Sween, Scotland. Measurements were also carried out at an adjacent (~20 m distant) permeable sandy habitat. The O2 exchange rate was highly dynamic, driven by light availability and the ambient tidally-driven flow velocity. Linear relationships between the EC O2 fluxes and available light indicate that the benthic phototrophic communities were lightlimited. Compensation irradiance (Ec) varied seasonally and was typically ~1.8-fold lower at the maerl bed compared to the sand. Substantial GPP was evident at both sites; however, the maerl bed and the sand habitat were net heterotrophic during each sampling campaign. Additional inputs of ~4 and ~7 mol m-2 yr-1 of carbon at the maerl bed and sand site, respectively, were required to sustain the benthic O2 demand. Thus, the 2 benthic habitats efficiently entrap organic carbon and are sinks of organic material in the coastal zone. Parallel deployment of 0.1 m2 benthic chambers during nighttime revealed O2 uptake rates that varied by up to ~8-fold between replicate chambers (from -0.4 to -3.0 mmol O2 m-2 h-1; n = 4). However, despite extensive O2 flux variability on meter horizontal scales, mean rates of O2 uptake as resolved in parallel by chambers and EC were typically within 20% of one another
The Regulation of Aggrecanase ADAMTS-4 Expression in Human Achilles Tendon and tendon-Derived Cells
Several members of the ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) family have been identified as aggrecanases, whose substrates include versican, the principal large proteoglycan in the tendon extracellular matrix. We have characterized the expression of ADAMTS-4 in human Achilles tendon and tendon-derived cells. ADAMTS-4 mRNA levels were higher in ruptured tendon compared with normal tendon or chronic painful tendinopathy. In tissue extracts probed by Western blotting, mature ADAMTS-4 (68 kDa) was detected only in ruptured tendons, while processed ADAMTS-4 (53 kDa) was detected also in chronic painful tendinopathy and in normal tendon. In cultured Achilles tendon cells, transforming growth factor-ß (TGF-ß) stimulated ADAMTS-4 mRNA expression (typically 20-fold after 24 h), while interleukin-1 induced a smaller, shorter-term stimulation which synergised markedly with that induced by TGF-ß. Increased levels of immunoreactive proteins consistent with mature and processed forms of ADAMTS-4 were detected in TGF-ß-stimulated cells. ADAMTS-4 mRNA was expressed at higher levels by tendon cells in collagen gels than in monolayer cultures. In contrast, the expression of ADAMTS-1 and -5 mRNA was lower in collagen gels compared with monolayers, and these mRNA showed smaller or opposite responses to growth factors and cytokines compared with that of ADAMTS-4 mRNA. We conclude that both ADAMTS-4 mRNA and ADAMTS-4 protein processing may be differentially regulated in normal and damaged tendons and that both the matrix environment and growth factors such as TGF-ß are potentially important factors controlling ADAMTS aggrecanase activities in tendon pathology
Generalising Deep Learning MRI Reconstruction across Different Domains
We look into robustness of deep learning based MRI reconstruction when tested
on unseen contrasts and organs. We then propose to generalise the network by
training with large publicly-available natural image datasets with synthesised
phase information to achieve high cross-domain reconstruction performance which
is competitive with domain-specific training. To explain its generalisation
mechanism, we have also analysed patch sets for different training datasets.Comment: Accepted for ISBI2019 as a 1-page abstrac
Anisotropic suppression in nuclear collisions
The nuclear overlap zone in non-central relativistic heavy ion collisions is
azimuthally very asymmetric. By varying the angle between the axes of
deformation and the transverse direction of the pair momenta, the suppression
of and will oscillate in a characteristic way. Whereas the
average suppression is mostly sensitive to the early and high density stages of
the collision, the amplitude is more sensitive to the late stages. This effect
provides additional information on the suppression mechanisms such as
direct absorption on participating nucleons, comover absorption or formation of
a quark-gluon plasma. The behavior of the average suppression and its
amplitude with centrality of the collisions is discussed for SPS, RHIC and LHC
energies with and without a phase transition.Comment: Revised and extended version, new figure
- …
