14 research outputs found

    Dosimetry for spectral molecular imaging of small animals with MARS-CT

    Get PDF
    The Medipix All Resolution Scanner (MARS) spectral CT is intended for small animal, pre-clinical imaging and uses an x-ray detector (Medipix) operating in single photon counting mode. The MARS system provides spectrometric information to facilitate differentiation of tissue types and bio-markers. For longitudinal studies of disease models, it is desirable to characterise the system’s dosimetry. This dosimetry study is performed using three phantoms each consisting of a 30 mm diameter homogeneous PMMA cylinder simulating a mouse. The imaging parameters used for this study are derived from those used for gold nanoparticle identification in mouse kidneys. Dosimetry measurement are obtained with thermo-luminescent Lithium Fluoride (LiF:CuMgP) detectors, calibrated in terms of air kerma and placed at different depths and orientations in the phantoms. Central axis TLD air kerma rates of 17.2 (± 0.71) mGy/min and 18.2 (± 0.75) mGy/min were obtained for different phantoms and TLD orientations. Validation measurements were acquired with a pencil ionization chamber, giving an air-kerma rate of 20.3 (±1) mGy/min and an estimated total air kerma of 81.2 (± 4) mGy for a 720 projection acquisition. It is anticipated that scanner design improvements will significantly decrease future dose requirements. The procedures developed in this work will be used for further dosimetry calculations when optimizing image acquisition for the MARS system as it undergoes development towards human clinical applications

    Vetting the optical transient candidates detected by the GWAC network using convolutional neural networks

    No full text
    International audienceThe observation of the transient sky through a multitude of astrophysical messengers has led to several scientific breakthroughs in the last two decades, thanks to the fast evolution of the observational techniques and strategies employed by the astronomers. Now, it requires to be able to coordinate multiwavelength and multimessenger follow-up campaigns with instruments both in space and on ground jointly capable of scanning a large fraction of the sky with a high-imaging cadency and duty cycle. In the optical domain, the key challenge of the wide field-of-view telescopes covering tens to hundreds of square degrees is to deal with the detection, identification, and classification of hundreds to thousands of optical transient (OT) candidates every night in a reasonable amount of time. In the last decade, new automated tools based on machine learning approaches have been developed to perform those tasks with a low computing time and a high classification efficiency. In this paper, we present an efficient classification method using convolutional neural networks (CNNs) to discard many common types of bogus falsely detected in astrophysical images in the optical domain. We designed this tool to improve the performances of the OT detection pipeline of the Ground Wide field Angle Cameras (GWAC) telescopes, a network of robotic telescopes aiming at monitoring the OT sky down to R = 16 with a 15 s imaging cadency. We applied our trained CNN classifier on a sample of 1472 GWAC OT candidates detected by the real-time detection pipeline

    Foodborne transmission of sorbitol-fermenting Escherichia coli O157:[H7] via ground beef: an outbreak in northern France, 2011

    Get PDF
    International audienceSorbitol-fermenting Escherichia coli O157:[H7] is a particularly virulent clone of E. coli O157:H7 associated with a higher incidence of haemolytic uraemic syndrome and a higher case fatality rate. Many fundamental aspects of its epidemiology remain to be elucidated, including its reservoir and transmission routes and vehicles. We describe an outbreak of sorbitol-fermenting E. coli O157:[H7] that occurred in France in 2011. Eighteen cases of paediatric haemolytic uraemic syndrome with symptom onset between 6 June and 15 July 2011 were identified among children aged 6 months to 10 years residing in northern France. A strain of sorbitol-fermenting E. coli O157:[H7] stx2a eae was isolated from ten cases. Epidemiological, microbiological and trace-back investigations identified multiply-contaminated frozen ground beef products bought in a supermarket chain as the outbreak vehicle. Strains with three distinct pulsotypes that were isolated from patients, ground beef preparations recovered from patients' freezers and from stored production samples taken at the production plant were indistinguishable upon molecular comparison. This investigation documents microbiologically confirmed foodborne transmission of sorbitol-fermenting of E. coli O157 via beef and could additionally provide evidence of a reservoir in cattle for this pathogen

    The Biogenesis of the Golgi Ribbon: The Roles of Membrane Input from the ER and of GM130

    No full text
    The Golgi complex in mammalian cells forms a continuous ribbon of interconnected stacks of flat cisternae. We show here that this distinctive architecture reflects and requires the continuous input of membranes from the endoplasmic reticulum (ER), in the form of pleiomorphic ER-to-Golgi carriers (EGCs). An important step in the biogenesis of the Golgi ribbon is the complete incorporation of the EGCs into the stacks. This requires the Golgi-matrix protein GM130, which continuously cycles between the cis-Golgi compartments and the EGCs. On acquiring GM130, the EGCs undergo homotypic tethering and fusion, maturing into larger and more homogeneous membrane units that appear primed for incorporation into the Golgi stacks. In the absence of GM130, this process is impaired and the EGCs remain as distinct entities. This induces the accumulation of tubulovesicular membranes, the shortening of the cisternae, and the breakdown of the Golgi ribbon. Under these conditions, however, secretory cargo can still be delivered to the Golgi complex, although this occurs less efficiently, and apparently through transient and/or limited continuities between the EGCs and the Golgi cisternae

    Requirements for Transitional Endoplasmic Reticulum Site Structure and Function in Saccharomyces cerevisiae

    Get PDF
    Secretory proteins are exported from the ER at specialized regions known as transitional ER (tER). COPII proteins are enriched at tER sites, but mechanisms underlying assembly and maintenance are unclear. This study characterizes tER sites in Saccharomyces cerevisiae and probes protein and lipid requirements for tER site structure and function
    corecore