526 research outputs found

    Probing the Light Pseudoscalar Window

    Get PDF
    Very light pseudoscalars can arise from the symmetry-breaking sector in many extensions of the Standard Model. If their mass is below 200 MeV, they can be long-lived and have interesting phenomenology. We discuss the experimental constraints on several models with light pseudoscalars, including one in which the pseudoscalar is naturally fermiophobic. Taking into account the stringent bounds from rare K and B decays, we find allowed parameter space in each model that may be accessible in direct production experiments. In particular, we study the photoproduction of light pseudoscalars at Jefferson Lab and conclude that a beam dump experiment could explore some of the allowed parameter space of these models.Comment: 22 pages, 4 figure

    Sequential therapy of anti-Nogo-A antibody treatment and treadmill training leads to cumulative improvements after spinal cord injury in rats

    Get PDF
    Intense training is the most clinically successful treatment modality following incomplete spinal cord injuries (SCIs). With the advent of plasticity enhancing treatments, understanding how treatments might interact when delivered in combination becomes critical. Here, we investigated a rational approach to sequentially combine treadmill locomotor training with antibody mediated suppression of the fiber growth inhibitory protein Nogo-A. Following a large but incomplete thoracic lesion, rats were immediately treated with either anti-Nogo-A or control antibody (2 weeks) and then either left untrained or step-trained starting 3 weeks after injury for 8 weeks. It was found that sequentially combined therapy improved step consistency and reduced toe dragging and climbing errors, as seen with training and anti-Nogo-A individually. Animals with sequential therapy also adopted a more parallel paw position during bipedal walking and showed greater overall quadrupedal locomotor recovery than individual treatments. Histologically, sequential therapy induced the greatest corticospinal tract sprouting caudally into the lumbar region and increased the number of serotonergic synapses onto lumbar motoneurons. Increased primary afferent sprouting and synapse formation onto lumbar motoneurons observed with anti-Nogo-A antibody were reduced by training. Animals with sequential therapy also showed the highest reduction of lumbar interneuronal activity associated with walking (c-fos expression). No treatment effects for thermal nociception, mechanical allodynia, or lesion volume were observed. The results demonstrate that sequential administration of anti-Nogo-A antibody followed in time with intensive locomotor training leads to superior recovery of lost locomotor functions, which is probably mediated by changes in the interaction between descending sprouting and local segmental networks after SCI

    Characterization of the arcD Arginine:Ornithine Exchanger of Pseudomonas aeruginosa. Localization in the Cytoplasmic Membrane and a Topological Model

    Get PDF
    The arcDABC operon of Pseudomonas aeruginosa encodes the enzymes of the arginine deiminase pathway and is induced by oxygen limitation. The arcD gene specifies a 53-kDa protein with arginine: ornithine exchange activity. The ArcD protein of P. aeruginosa, like the LysI lysine transporter of Corynebacterium glutamicum, has 13 hydrophobic regions which could span the cytoplasmic membrane. Fusion of a Caa (colicin A) epitope to the N-terminal part of ArcD permitted the localization, by immunoblotting, of the hybrid protein in the inner membrane of P. aeruginosa. Fusion of PhoA (alkaline phosphatase) to the very C terminus of ArcD produced another hybrid protein, which exhibited PhoA activity. Both ArcD hybrid proteins retained arginine transport activity and served to support a topological model which proposes that the N terminus is oriented toward the cytoplasm and the C terminus faces the periplasm. Further ArcD-PhoA fusions were consistent with this model. When the Caa epitope was fused to a C-terminal ArcD fragment consisting of only 5 hydrophobic domains, the resulting hybrid protein could be recovered intact from the inner membrane, suggesting that the C-terminal part of ArcD contains sufficient information for insertion into the membrane. This study illustrates the utility of the Caa epitope to tag membrane proteins

    Redox-Dependent Modulation of T-Type Ca2+ Channels in Sensory Neurons Contributes to Acute Anti-Nociceptive Effect of Substance P

    Get PDF
    Aims: Neuropeptide substance P (SP) is produced and released by a subset of peripheral sensory neurons that respond to tissue damage (nociceptors). SP exerts excitatory effects in the central nervous system, but peripheral SP actions are still poorly understood; therefore, here, we aimed at investigating these peripheral mechanisms. Results: SP acutely inhibited T-type voltage-gated Ca2+ channels in nociceptors. The effect was mediated by neurokinin 1 (NK1) receptor-induced stimulation of intracellular release of reactive oxygen species (ROS), as it can be prevented or reversed by the reducing agent dithiothreitol and mimicked by exogenous or endogenous ROS. This redox-mediated T-type Ca2+ channel inhibition operated through the modulation of CaV3.2 channel sensitivity to ambient zinc, as it can be prevented or reversed by zinc chelation and mimicked by exogenous zinc. Elimination of the zinc-binding site in CaV3.2 rendered the channel insensitive to SP-mediated inhibition. Importantly, peripherally applied SP significantly reduced bradykinin-induced nociception in rats in vivo; knock-down of CaV3.2 significantly reduced this anti-nociceptive effect. This atypical signaling cascade shared the initial steps with the SP-mediated augmentation of M-type K+ channels described earlier. Innovation: Our study established a mechanism underlying the peripheral anti-nociceptive effect of SP whereby this neuropeptide produces ROS-dependent inhibition of pro-algesic T-type Ca2+ current and concurrent enhancement of anti-algesic M-type K+ current. These findings will lead to a better understanding of mechanisms of endogenous analgesia. Conclusion: SP modulates T-type channel activity in nociceptors by a redox-dependent tuning of channel sensitivity to zinc; this novel modulatory pathway contributes to the peripheral anti-nociceptive effect of SP

    Itchy channels and where to find them

    Get PDF
    Itch (pruritus) is an unpleasant sensory experience that triggers a desire to scratch. It is induced by activation of a subset of cutaneous C fibers in response to environmental irritants and some endogenous mediators (such as histamine

    Properties and Therapeutic Potential of Transient Receptor Potential Channels with Putative Roles in Adversity: Focus on TRPC5, TRPM2 and TRPA1

    Get PDF
    Mammals contain 28 genes encoding Transient Receptor Potential (TRP) proteins. The proteins assemble into cationic channels, often with calcium permeability. Important roles in physiology and disease have emerged and so there is interest in whether the channels might be suitable therapeutic drug targets. Here we review selected members of three subfamilies of mammalian TRP channel (TRPC5, TRPM2 and TRPA1) that show relevance to sensing of adversity by cells and biological systems. Summarized are the cellular and tissue distributions, general properties, endogenous modulators, protein partners, cellular and tissue functions, therapeutic potential, and pharmacology. TRPC5 is stimulated by receptor agonists and other factors that include lipids and metal ions; it heteromultimerises with other TRPC proteins and is involved in cell movement and anxiety control. TRPM2 is activated by hydrogen peroxide; it is implicated in stress-related inflammatory, vascular and neurodegenerative conditions. TRPA1 is stimulated by a wide range of irritants including mustard oil and nicotine but also, controversially, noxious cold and mechanical pressure; it is implicated in pain and inflammatory responses, including in the airways. The channels have in common that they show polymodal stimulation, have activities that are enhanced by redox factors, are permeable to calcium, and are facilitated by elevations of intracellular calcium. Developing inhibitors of the channels could lead to new agents for a variety of conditions: for example, suppressing unwanted tissue remodeling, inflammation, pain and anxiety, and addressing problems relating to asthma and stroke

    Autocracy-Sustaining Versus Democratic Federalism:Explaining the Divergent Trajectories of Territorial Politics in Russia and Western Europe

    Get PDF
    This article provides a comparative assessment of territorial politics in Russia and Western Europe. The consolidation or deepening of regional autonomy in Western Europe contrasts with the transformation of Russia from a segmented and highly centrifugal state into a centralized authoritarian state in the course of just two decades. The consolidation of territorial politics in Western Europe is linked to the presence of endogenous safeguards that are built into their territorial constitutional designs and most importantly to the dynamics that emanate from multi-level party competition in the context of a liberal and multi-level democracy. In contrast, in Russia, neither endogenous safeguards nor multi-level party democracy play an important role in explaining the dynamics of Russian federalism, but who controls key state resources instead. We argue that under Putin power dependencies between the Russian center and the regions are strongest where regional democracy is at its weakest, thus producing ‘autocracy-sustaining’ instead of a democratic federation. By studying the relationship between federalism and democracy in cases where both concepts are mutually reinforcing (as in Western Europe) with the critical case of Russia where they are not, we question the widely held view that democracy is a necessary pre-condition for federalism.Peer reviewe

    Delineating an extracellular redox-sensitive module in T-type Ca2+ channels

    Get PDF
    T-type (Cav3) Ca2+ channels are important regulators of excitability and rhythmic activity of excitable cells. Among other voltage-gated Ca2+ channels, Cav3 channels are uniquely sensitive to oxidation and zinc. Using recombinant protein expression in HEK293 cells, patch-clamp electrophysiology, site-directed mutagenesis, and homology modeling, we report here that modulation of Cav3.2 by redox agents and zinc is mediated by a unique extracellular module containing i) a high-affinity metal-binding site formed by the extracellular IS1–IS2 and IS3–IS4 loops of domain I, and ii) a cluster of extracellular cysteines in the IS1–IS2 loop. Patch clamp recording of recombinant Cav3.2 currents revealed that two cysteine-modifying agents, sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES) and N-ethylmaleimide (NEM), as well as a reactive oxygen species–producing neuropeptide, substance P (SP), inhibit Cav3.2 current to similar degrees and that this inhibition is reversed by a reducing agent and a zinc chelator. Pre-application of MTSES prevented further SP-mediated current inhibition. Substitution of the zinc-binding residue His-191 in Cav3.2 reduced the channel’s sensitivity to MTSES, and introduction of the corresponding histidine into Cav3.1 sensitized it to MTSES. Removal of extracellular cysteines from the IS1–IS2 loop of Cav3.2 reduced its sensitivity to both MTSES and SP. We hypothesize that oxidative modification of IS1–IS2 loop cysteines induces allosteric changes in the zinc-binding site of Cav3.2, such that it become sensitive to ambient zinc
    corecore