88 research outputs found

    Quantitation of SPLUNC1 in saliva with an xMAP particle-based antibody capture and detection immunoassay

    Get PDF
    The short palate lung and nasal epithelial clone 1 (SPLUNC1) protein may be differentially expressed in oral infections, oral inflammatory disorders, or oral malignancies and may be involved in innate immune responses in the oral cavity. However, the actual concentration of SPLUNC1 in saliva has not previously been determined. In this study, we determined the concentrations of SPLUNC1 in saliva using a particle-based antibody capture and detection immunoassay. A commercial goat anti-rhSPLUNC1 polyclonal antibody (AF1897) was linked to fluorescent polystyrene microspheres and used as the capture antibody. A commercial mouse IgG2b anti-rhSPLUNC1 monoclonal antibody (MAB1897) was biotinylated and used as the detection antibody. Western blot and 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE) analysis of immunoprecipitated rhSPLUNC1 and SPLUNC1 from saliva were used to show that the capture AF1897 and detection MAB1897 antibodies both recognized SPLUNC1. Protein concentrations in saliva from 20 subjects ranged from 0.9 to 23.9 mg/ml; SPLUNC1 concentrations ranged from 34.7 ng/ml to 13.8 μg/ml; and SPLUNC concentrations normalized per mg of total salivary protein ranged from 4.7 ng/ml to 5.3 μg/ml. These results show that SPLUNC1 is detected in saliva in a variety of concentrations. This immunoassay may prove to be useful in determining the concentration of SPLUNC1 in saliva for assessing its role in the pathogenesis of oral infections, oral inflammatory disorders, or oral malignancies

    BPIFB1 (LPLUNC1) is upregulated in cystic fibrosis lung disease

    Get PDF
    Although the biology the PLUNC (recently renamed BPI fold, BPIF) family of secreted proteins is poorly understood, multiple array based studies have suggested that some are differentially expressed in lung diseases. We have examined the expression of BPIFB1 (LPLUNC1), the prototypic two-domain containing family member, in lungs from CF patients and in mouse models of CF lung disease. BPIFB1 was localized in CF lung samples along with BPIFA1, MUC5AC, CD68 and NE and directly compared to histologically normal lung tissues and that of bacterial pneumonia. We generated novel antibodies to mouse BPIF proteins to conduct similar studies on ENaC transgenic (ENaC-Tg) mice, a model for CF-like lung disease. Small airways in CF demonstrated marked epithelial staining of BPIFB1 in goblet cells but staining was absent from alveolar regions. BPIFA1 and BPIFB1 were not co-localised in the diseased lungs. In ENaC-Tg mice there was strong staining of both proteins in the airways and luminal contents. This was most marked for BPIFB1 and was noted within 2 weeks of birth. The two proteins were present in distinct cells within epithelium. BPIFB1 was readily detected in BAL from ENaC-Tg mice but was absent from wild-type mice. Alterations in the expression of BPIF proteins is associated with CF lung disease in humans and mice. It is unclear if this elevation of protein production, which results from phenotypic alteration of the cells within the diseased epithelium, plays a role in the pathogenesis of the disease

    Functional Characterization of Circulating Tumor Cells with a Prostate-Cancer-Specific Microfluidic Device

    Get PDF
    Cancer metastasis accounts for the majority of cancer-related deaths owing to poor response to anticancer therapies. Molecular understanding of metastasis-associated drug resistance remains elusive due to the scarcity of available tumor tissue. Isolation of circulating tumor cells (CTCs) from the peripheral blood of patients has emerged as a valid alternative source of tumor tissue that can be subjected to molecular characterization. However, issues with low purity and sensitivity have impeded adoption to clinical practice. Here we report a novel method to capture and molecularly characterize CTCs isolated from castrate-resistant prostate cancer patients (CRPC) receiving taxane chemotherapy. We have developed a geometrically enhanced differential immunocapture (GEDI) microfluidic device that combines an anti-prostate specific membrane antigen (PSMA) antibody with a 3D geometry that captures CTCs while minimizing nonspecific leukocyte adhesion. Enumeration of GEDI-captured CTCs (defined as intact, nucleated PSMA+/CD45− cells) revealed a median of 54 cells per ml identified in CRPC patients versus 3 in healthy donors. Direct comparison with the commercially available CellSearch® revealed a 2–400 fold higher sensitivity achieved with the GEDI device. Confocal microscopy of patient-derived GEDI-captured CTCs identified the TMPRSS2:ERG fusion protein, while sequencing identified specific androgen receptor point mutation (T868A) in blood samples spiked with only 50 PC C4-2 cells. On-chip treatment of patient-derived CTCs with docetaxel and paclitaxel allowed monitoring of drug-target engagement by means of microtubule bundling. CTCs isolated from docetaxel-resistant CRPC patients did not show any evidence of drug activity. These measurements constitute the first functional assays of drug-target engagement in living circulating tumor cells and therefore have the potential to enable longitudinal monitoring of target response and inform the development of new anticancer agents

    Increased Secreted Amyloid Precursor Protein-α (sAPPα) in Severe Autism: Proposal of a Specific, Anabolic Pathway and Putative Biomarker

    Get PDF
    Autism is a neurodevelopmental disorder characterized by deficits in verbal communication, social interactions, and the presence of repetitive, stereotyped and compulsive behaviors. Excessive early brain growth is found commonly in some patients and may contribute to disease phenotype. Reports of increased levels of brain-derived neurotrophic factor (BDNF) and other neurotrophic-like factors in autistic neonates suggest that enhanced anabolic activity in CNS mediates this overgrowth effect. We have shown previously that in a subset of patients with severe autism and aggression, plasma levels of the secreted amyloid-β (Aβ) precursor protein-alpha form (sAPPα) were significantly elevated relative to controls and patients with mild-to-moderate autism. Here we further tested the hypothesis that levels of sAPPα and sAPPβ (proteolytic cleavage products of APP by α- and β-secretase, respectively) are deranged in autism and may contribute to an anabolic environment leading to brain overgrowth. We measured plasma levels of sAPPα, sAPPβ, Aβ peptides and BDNF by corresponding ELISA in a well characterized set of subjects. We included for analysis 18 control, 6 mild-to-moderate, and 15 severely autistic patient plasma samples. We have observed that sAPPα levels are increased and BDNF levels decreased in the plasma of patients with severe autism as compared to controls. Further, we show that Aβ1-40, Aβ1-42, and sAPPβ levels are significantly decreased in the plasma of patients with severe autism. These findings do not extend to patients with mild-to-moderate autism, providing a biochemical correlate of phenotypic severity. Taken together, this study provides evidence that sAPPα levels are generally elevated in severe autism and suggests that these patients may have aberrant non-amyloidogenic processing of APP

    Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi

    Get PDF

    An innate defense peptide BPIFA1/SPLUNC1 restricts influenza A virus infection

    Get PDF
    The airway epithelium secretes proteins that function in innate defense against infection. BPI fold-containing family member A1 (BPIFA1) is secreted into airways and has a protective role during bacterial infections, but it is not known whether it also has an antiviral role. To determine a role in host defense against influenza A virus (IAV) infection and to find the underlying defense mechanism we developed transgenic mouse models that are deficient in BPIFA1 and used these, in combination with in vitro 3D mouse tracheal epithelial cell (mTEC) cultures, to investigate its antiviral properties. We show that BPIFA1 has a significant role in mucosal defense against IAV infection. BPIFA1 secretion was highly modulated after IAV infection. Mice deficient in BPIFA1 lost more weight after infection, supported a higher viral load and virus reached the peripheral lung earlier, indicative of a defect in the control of infection. Further analysis using mTEC cultures showed that BPIFA1-deficient cells bound more virus particles, displayed increased nuclear import of IAV ribonucleoprotein complexes and supported higher levels of viral replication. Our results identify a critical role for BPIFA1 in the initial phase of infection by inhibiting the binding and entry of IAV into airway epithelial cells

    Poor Handwriting Remains a Significant Problem in Medicine

    No full text

    Dietary and ontogenic regulation of fatty acid desaturase and elongase expression in broiler chickens

    No full text
    Effects of diet and ontogeny on the expression of fatty acid desaturases and elongases were examined in broiler chickens. In Study 1, 120 day-old male chicks received one of six diets with LA:ALA ranging from 46:4 to 16:34, for 33 days. Total n-6 PUFA decreased, and n-3 PUFA increased in response to a decrease in the dietary LA:ALA. FADS1, FADS2, ELOVL2 and ELOVL5 mRNAs were highest (P<0.05) in birds fed lower LA:ALA diets. In Study 2, 60 day-old male chicks were fed a basal diet, and liver samples were collected on day of hatch, and on days 2, 7, 14, 21 and 35 post-hatch. Total n-6 and n-3 PUFA increased (P<0.01) from days 7 to days 21. FADS1, FADS2 and ELOVL2 mRNAs generally increased (P<0.01) with age. These findings provide evidence for the dietary and developmental regulation of PUFA metabolism in broiler chickens.M. Jing, N. Gakhar, R.A. Gibson, J.D. Hous

    Effect of feeding hemp seed and hemp seed oil on laying hen performance and egg yolk fatty acid content: evidence of their safety and efficacy for laying hen diets

    No full text
    Forty-eight 19-wk-old Bovan White laying hens were fed 1 of 5 diets containing either hemp seed (HS) or hemp seed oil (HO). The level of HO was 4, 8, or 12%, whereas the level was 10 or 20% for the HS. A set of 8 birds fed wheat-, barley-, and corn oil-based diets served as the control. Performance was monitored over 12 wk. Average hen-day egg production was not affected upon feeding of either HS or HO diets. Egg weight was higher than that of the controls for hens consuming the 20% HS diet (P < 0.05). Feed intake was lower than that of the controls for birds consuming the 4% HO diet but similar across other treatments. Final BW were not affected by diet, with the exception of being lower than that of the controls (P < 0.05) in hens consuming the 12% HO diet. The total egg yolk n-3 fatty acid content increased linearly (P < 0.05) with increasing dietary α-linolenic acid provision with the HS- or HO-based diets. A quadratic response (P < 0.05) was observed for docosahexaenoic acid levels in egg yolk in response to increasing dietary α-linolenic acid supply. The expression of hepatic fatty acid desaturase 1 and 2, key genes for the desaturation of long-chain polyunsaturated fatty acids, was significantly decreased (50–60% of controls; P < 0.05) as a result of feeding HS or HO diets. Based on the results from the current study, the inclusion of the hemp products HS or HO in the diets of laying hens up to a maximum level of 20 and 12%, respectively, does not adversely effect the performance of laying hens and leads to the enrichment of the n-3 fatty acid content of eggs.N. Gakhar, E. Goldberg, M. Jing, R. Gibson and J. D. Hous
    corecore