633 research outputs found

    Separately contacted electron-hole double layer in a GaAs/AlxGa1−xAs heterostructure

    Get PDF
    We describe a method for creating closely spaced parallel two-dimensional electron and hole gases confined in 200 Å GaAs wells separated by a 200 Å wide AlxGa1−xAs barrier. Low-temperature ohmic contacts are made to both the electrons and holes, whose densities are individually adjustable between 10^(10)/cm^2 to greater than 10^(11)/cm^2

    Breakdown of the Two-Step Model in K-Shell Photoemission and Subsequent Decay Probed by the Molecular-Frame Photoelectron Angular Distributions of CO_2

    Get PDF
    We report results of measurements and of Hartree-Fock level calculations of molecular-frame photoelectron angular distributions (MFPADs) for C 1s photoemission from CO2. The agreement between the measured and calculated MFPADs is on average reasonable. The measured MFPADs display a weak but definite asymmetry with respect to the O+ and CO+ fragment ions at certain energies, providing evidence for an overlap of gerade and ungerade final ionic states giving rise to a partial breakdown of the two-step model of core-level photoionization and its subsequent Auger decay

    Excitonic instability and electric-field-induced phase transition towards a two dimensional exciton condensate

    Full text link
    We present an InAs-GaSb-based system in which the electric-field tunability of its 2D energy gap implies a transition towards a thermodynamically stable excitonic condensed phase. Detailed calculations show a 3 meV BCS-like gap appearing in a second-order phase transition with electric field. We find this transition to be very sharp, solely due to exchange interaction, and so, the exciton binding energy is greatly renormalized even at small condensate densities. This density gradually increases with external field, thus enabling the direct probe of the Bose-Einstein to BCS crossover.Comment: LaTex, 11 pages, 3 ps figures, To appear in PR

    Interaction potential between dynamic dipoles: polarized excitons in strong magnetic fields

    Full text link
    The interaction potential of a two-dimensional system of excitons with spatially separated electron-hole layers is considered in the strong magnetic field limit. The excitons are assumed to have free dynamics in the xx-yy plane, while being constrained or `polarized' in the zz direction. The model simulates semiconductor double layer systems under strong magnetic field normal to the layers. The {\em residual} interaction between excitons exhibits interesting features, arising from the coupling of the center-of-mass and internal degrees of freedom of the exciton in the magnetic field. This coupling induces a dynamical dipole moment proportional to the center-of-mass magnetic moment of the exciton. We show the explicit dependence of the inter-exciton potential matrix elements, and discuss the underlying physics. The unusual features of the interaction potential would be reflected in the collective response and non-equilibrium properties of such system.Comment: REVTEX - 11 pages - 1 fi

    Magnetoresistance through a single molecule

    Full text link
    The use of single molecules to design electronic devices is an extremely challenging and fundamentally different approach to further downsizing electronic circuits. Two-terminal molecular devices such as diodes were first predicted [1] and, more recently, measured experimentally [2]. The addition of a gate then enabled the study of molecular transistors [3-5]. In general terms, in order to increase data processing capabilities, one may not only consider the electron's charge but also its spin [6,7]. This concept has been pioneered in giant magnetoresistance (GMR) junctions that consist of thin metallic films [8,9]. Spin transport across molecules, i.e. Molecular Spintronics remains, however, a challenging endeavor. As an important first step in this field, we have performed an experimental and theoretical study on spin transport across a molecular GMR junction consisting of two ferromagnetic electrodes bridged by a single hydrogen phthalocyanine (H2Pc) molecule. We observe that even though H2Pc in itself is nonmagnetic, incorporating it into a molecular junction can enhance the magnetoresistance by one order of magnitude to 52%.Comment: To appear in Nature Nanotechnology. Present version is the first submission to Nature Nanotechnology, from May 18th, 201

    Bose-Einstein statistics in thermalization and photoluminescence of quantum well excitons

    Full text link
    Quasi-equilibrium relaxational thermodynamics is developed to understand LA-phonon-assisted thermalization of Bose-Einstein distributed excitons in quantum wells. We study the quantum-statistical effects in the relaxational dynamics of the effective temperature of excitons T=T(t)T = T(t). When TT is less than the degeneracy temperature T0T_0, well-developed Bose-Einstein statistics of quantum well excitons leads to nonexponential and density-dependent thermalization. At low bath temperatures Tb→0T_b \to 0 the thermalization of quantum-statistically degenerate excitons effectively slows down and T(t)∝1/ln⁥tT(t) \propto 1 / \ln t. We also analyze the optical decay of Bose-Einstein distributed excitons in perfect quantum wells and show how nonclassical statistics influences the effective lifetime τopt\tau_{opt}. In particular, τopt\tau_{opt} of a strongly degenerate gas of excitons is given by 2τR2 \tau_R, where τR\tau_R is the intrinsic radiative lifetime of quasi-two-dimensional excitons. Kinetics of resonant photoluminescence of quantum well excitons during their thermalization is studied within the thermodynamic approach and taking into account Bose-Einstein statistics. We find density-dependent photoluminescence dynamics of statistically degenerate excitons. Numerical modeling of the thermalization and photoluminescence kinetics of quasi-two-dimensional excitons are given for GaAs/AlGaAs quantum wells.Comment: 19 pages, 9 figures. Phys. Rev. B (accepted for publication
    • 

    corecore