138 research outputs found

    Short communications: Bat-hunting behaviour of the Dark Chanting Goshawk Melierax metabates

    Get PDF
    No abstrac

    Termites of the Genus Odontotermes are Optionally Keratophagous

    Get PDF
    In this study we tested experimentally whether the consumption of mammalian hooves by termites of the genus Odontotermes is a mere incidental, previously overlooked event, or whether higher termites frequently exploit hooves of ungulates as a supplementary food source. The experiment was conducted in the open woodland savanna region of Serengeti National Park, Tanzania. In total, 88 hooves of wildebeest (Connochaetes taurinus) and zebra (Equus burchelli) – of two age classes – were offered to the termites in the field. After five days, 18.3% of old and 15.0% of fresh wildebeest hooves and 16.7% of old zebra hooves were utilized by termites as a food source. Accordingly, we report here for the first time a systematic, frequent necrophorous foraging behavior of termites in general, which also adds termites to the very short list of potential decomposers of mammalian hooves. Termites of the genus Odontotermes seem not to show a preference for a specific age class of the provided wildebeest hooves. Our results suggest that ungulate hooves represent a spatially and temporarily highly variable, potentially macro- and micronutrient-rich, supplementary food source for higher termites in this savanna ecosystem. Termites of the genus Odontotermes might accordingly be considered as being not only decomposers, but also optional necrophores, i.e. being keratophagous. Members of this genus might play an important role in the decomposition of mammalian hooves in African savannas

    The Serengeti food web:Empirical quantification and analysis of topological changes under increasing human impact

    Get PDF
    P>1. To address effects of land use and human overexploitation on wildlife populations, it is essential to better understand how human activities have changed species composition, diversity and functioning. Theoretical studies modelled how network properties change under human-induced, non-random species loss. However, we lack data on realistic species-loss sequences in threatened, real-world food webs to parameterize these models. 2. Here, we present a first size-structured topological food web of one of the most pristine terrestrial ecosystems in the world, the Serengeti ecosystem (Tanzania). The food web consists of 95 grouped nodes and includes both invertebrates and vertebrates ranging from body masses between 10-7 and 104 kg. 3. We study the topological changes in this food web that result from the simulated IUCN-based species-loss sequence representing current species vulnerability to human disturbances in and around this savanna ecosystem. We then compare this realistic extinction scenario with other extinction sequences based on body size and connectance and perform an analysis of robustness of this savanna food web. 4. We demonstrate that real-world species loss in this case starts with the biggest (mega) herbivores and top predators, causing higher predator-prey mass ratios. However, unlike theoretically modelled linear species deletion sequences, this causes poor-connected species to be lost first, while more highly connected species become lost as human impact progresses. This food web shows high robustness to decreasing body size and increasing connectance deletion sequences compared with a high sensitivity to the decreasing connectance deletion scenario. 5. Furthermore, based on the current knowledge of the Serengeti ecosystem, we discuss how the focus on food web topology alone, disregarding nontrophic interactions, may lead to an underestimation of human impacts on wildlife communities, with the number of trophic links affected by a factor of two. 6. This study underlines the importance of integrative efforts between the development of food web theory and basic field work approaches in the quantification of the structure of interaction networks to sustain natural ecosystems in a changing world

    Directional wetting in anisotropic inverse opals

    Get PDF
    Porous materials display interesting transport phenomena due to the restricted motion of fluids within the nano- to micro-scale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy

    Tunable anisotropy in inverse opals and emerging optical properties

    Get PDF
    Using self-assembly, nanoscale materials can be fabricated from the bottom up. Opals and inverse opals are examples of self-assembled nanomaterials made from crystallizing colloidal particles. As self-assembly requires a high level of control, it is challenging to use building blocks with anisotropic geometry to form complex opals, which limits the realizable structures. Typically, spherical colloids are employed as building blocks, leading to symmetric, isotropic superstructures. However, a significantly richer palette of directionally dependent properties are expected if less symmetric, anisotropic structures can be created, especially originating from the assembly of regular, spherical particles. Here we show a simple method to introduce anisotropy into inverse opals by subjecting them to a post-assembly thermal treatment that results in directional shrinkage of the silica matrix caused by condensation of partially hydrated sol-gel silica structures. In this way, we can tailor the shape of the pores, and the anisotropy of the final inverse opal preserves the order and uniformity of the self-assembled structure, while completely avoiding the need to synthesize complex oval-shaped particles and crystallize them into such target geometries. Detailed X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies clearly identify increasing degrees of sol-gel condensation in confinement as a mechanism for the structure change. A computer simulation of structure changes resulting from the condensation-induced shrinkage further confirmed this mechanism. As an example of property changes induced by the introduction of anisotropy, we characterized the optical spectra of the anisotropic inverse opals and found that the optical properties can be controlled in a precise way using calcination temperature
    • 

    corecore