15 research outputs found

    Coupling changes in cell shape to chromosome segregation

    Get PDF
    Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance

    Local and tissue-scale forces drive oriented junction growth during tissue extension

    No full text
    International audienceConvergence-extension is a widespread morphogenetic process driven by polarized cell intercalation. In the Drosophila germ band, epithelial intercalation comprises loss of junctions between anterior-posterior neighbours followed by growth of new junctions between dorsal-ventral neighbours. Much is known about how active stresses drive polarized junction shrinkage. However, it is unclear how tissue convergence-extension emerges from local junction remodelling and what the specific role, if any, of junction growth is. Here we report that tissue convergence and extension correlate mostly with new junction growth. Simulations and in vivo mechanical perturbations reveal that junction growth is due to local polarized stresses driven by medial actomyosin contractions. Moreover, we find that tissue-scale pulling forces at the boundary with the invaginating posterior midgut actively participate in tissue extension by orienting junction growth. Thus, tissue extension is akin to a polarized fluid flow that requires parallel and concerted local and tissue-scale forces to drive junction growth and cell-cell displacement

    Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles

    No full text
    International audienceAnimal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings
    corecore