5,223 research outputs found

    Tungsten wire/FeCrAlY matrix turbine blade fabrication study

    Get PDF
    The objective was to establish a viable FRS monotape technology base to fabricate a complex, advanced turbine blade. All elements of monotape fabrication were addressed. A new process for incorporation of the matrix, including bi-alloy matrices, was developed. Bonding, cleaning, cutting, sizing, and forming parameters were established. These monotapes were then used to fabricate a 48 ply solid JT9D-7F 1st stage turbine blade. Core technology was then developed and first a 12 ply and then a 7 ply shell hollow airfoil was fabricated. As the fabrication technology advanced, additional airfoils incorporated further elements of sophistication, by introducing in sequence bonded root blocks, cross-plying, bi-metallic matrix, tip cap, trailing edge slots, and impingement inserts

    The Dynamics of Energy Systems and the Logistic Substitution Model. Executive Summary

    Get PDF
    This is a report on the work done at the International Institute for Applied Systems Analysis in 1976 to 1977 under a grant from Volkswagenwerk Foundation, whose objective was to explore the potential and the mechanisms of logistic analysis to describe the structure and the evolution of energy systems. Volume One contains the phenomenological part. About 300 cases were examined, some of which are reported in detail. The quality of the logistic description is generally excellent, even for cases extending 150 years into the past and with all the perturbations such a long time span entails, and consequently we thought it appropriate to extend the description into the future and use it for prediction. This was not really the objective of the grant but 'it naturally arises from the work and provides food for thought. Projections in the current literature appear to be in fact strongly inconsistent with the past, which casts doubts on their realizability, and are even internally inconsistent, which reinforces these doubts. The fact that numerous "free" choices at the social level lead to very regular overall patterns should perhaps temper the feeling of being caught in a deterministic clockwork. In Volume Two, devoted to the theoretical work, F. Fleck deals specifically with this problem showing the final regularity derived from a set of stochastic, i.e. "free", decisions. V. Peterka, on the other hand, operates at a more aggregated level, where one can start to speak of economic determinism. He describes a form of fate we are more ready to accept, if only grudgingly. Our exploration has generated more problems than we have solved; thus the field appears very fertile for future research

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF
    The dynamic response of end-clamped monolithic beams and sandwich beams has been measured by loading the beams at mid-span using metal foam projectiles. The AISI 304 stainless-steel sandwich beams comprise two identical face sheets and either prismatic Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the beams as a function of projectile momentum. The prismatic cores are aligned either longitudinally along the beam length or transversely. It is found that the sandwich beams with a longitudinal core orientation have a higher shock resistance than the monolithic beams of equal mass. In contrast, the performance of the sandwich beams with a transverse core orientation is very similar to that of the monolithic beams. Three-dimensional finite element (FE) simulations are in good agreement with the measured responses. The FE calculations indicate that strain concentrations in the sandwich beams occur at joints within the cores and between the core and face sheets; the level of maximum strain is similar for the Y-frame and corrugated core beams for a given value of projectile momentum. The experimental and FE results taken together reveal that Y-frame and corrugated core sandwich beams of equal mass have similar dynamic performances in terms of rear-face deflection, degree of core compression and level of strain within the beam

    Is the partial pressure of carbon dioxide in the blood related to the development of retinopathy of prematurity?

    Get PDF
    AIMS—To determine the role of carbon dioxide in the development of retinopathy of prematurity (ROP).
METHODS—This was a retrospective cohort study of 25 consecutive infants admitted to the neonatal unit with continuously recorded physiological data. The daily mean and standard deviation (SD) of transcutaneous carbon dioxide partial pressure (tcPCO(2)) was compared between infants who had stage 1 or 2 ROP and stage 3 ROP. The time spent hypocarbic (<3 kPa) and/or hypercarbic (>10 kPa and >12 kPa) was also compared between these groups. Intermittent arterial carbon dioxide tension was also measured and compared with the simultaneous tcPCO(2) data.
RESULTS—There were no significant differences in carbon dioxide variability or time spent hypocarbic and/or hypercarbic between the ROP groups on any day. 86% of transcutaneous values were within 1.5 kPa of the simultaneous arterial value.
CONCLUSION—TcPCO(2) measurement can be a very useful management technique. However, in this cohort neither variable blood carbon dioxide tension nor duration of hypercarbia or hypocarbia in the first 2 weeks of life was associated with the development or severity of ROP.


    Powder metallurgy bearings for advanced rocket engines

    Get PDF
    Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified

    Lo-fi prototyping to design interactive-tabletop applications for children

    Get PDF
    Interactive tabletops are an exiting new platform for supporting children's collaboration. With design guidelines and standardized interaction principles still immature, there is a considerable need for iterative prototyping to define the task and interface. Lo-fi prototypes-using cardboard, paper, etc.- are easy to develop, flexible to adjust during design sessions, and intuitive for users to manipulate. Using them can be a valuable step in designing tabletop applications. In this paper, we detail the design process of two tabletop applications, concentrating on the role of lo-fi prototyping. TransTime is a pattern game for 5-6 year olds to engage how time progresses. OurSpace is a design tool for 7-9 year olds to arrange desks and assign seats for students in their classroom. By comparing the experiences, we arrive at a better understanding of the benefits, challenges, and limits of using lo-fi prototypes to design interactive-tabletop applications for children

    Analysis of hydrogen diffusion in the three stage electro-permeation test

    Get PDF
    The presence of hydrogen traps within a metallic alloy influences the rate of hydrogen diffusion. The electro-permeation (EP) test can be used to assess this: the permeation of hydrogen through a thin metallic sheet is measured by suitable control of hydrogen concentration on the front face and by recording the flux of hydrogen that exits the rear face. Additional insight is achieved by the more sophisticated three stage EP test: the concentration of free lattice hydrogen on the front face is set to an initial level, is then dropped to a lower intermediate value and is then restored to the initial level. The flux of hydrogen exiting the rear face is measured in all three stages of the test. In the present study, a transient analysis is performed of hydrogen permeation in a three stage EP test, assuming that lattice diffusion is accompanied by trapping and de-trapping. The sensitivity of the three stage EP response to the depth and density of hydrogen traps is quantified. A significant difference in permeation response can exist between the first and third stages of the EP test when the alloy contains a high number density of deep traps

    Asymmetric Silver to Oxide Adhesion in Multilayers Deposited on Glass by Sputtering

    Full text link
    We have developed a wedge-loaded double-cantilever beam adhesion measurement set-up for thin films deposited on glass by sputtering. The test is described in details. Results on the Glass/sublayer/Ag/ZnO multilayer provide evidence that \SnOd or \TiOd perform better than ZnO as a sublayer. Then however, rupture within the multilayer shifts to the upper Ag/ZnO interface. The latter is shown to be tougher than the lower ZnO/Ag interface, an asymmetry due to non-equilibrium interfacial structures
    corecore