336 research outputs found

    Entanglement entropy of black holes and AdS/CFT correspondence

    Full text link
    A recent proposal by Ryu and Takayanagi for a holographic interpretation of entanglement entropy in conformal field theories dual to supergravity on anti-de Sitter (adS) is generalized to include entanglement entropy of black holes living on the boundary of adS. The generalized proposal is verified in boundary dimensions d=2d=2 and d=4d=4 for both the UV divergent and UV finite terms. In dimension d=4d=4 an expansion of entanglement entropy in terms of size LL of the subsystem outside the black hole is considered. A new term in the entropy of dual strongly coupled CFT, which universally grows as L2lnLL^2\ln L and is proportional to the value of the obstruction tensor at the black hole horizon, is predicted.Comment: 5 pages; minor typos corrected, minor changes in text. Version accepted for publication in Phys. Rev. Let

    Holography with Gravitational Chern-Simons Term

    Full text link
    The holographic description in the presence of gravitational Chern-Simons term is studied. The modified gravitational equations are integrated by using the Fefferman-Graham expansion and the holographic stress-energy tensor is identified. The stress-energy tensor has both conformal anomaly and gravitational or, if re-formulated in terms of the zweibein, Lorentz anomaly. We comment on the structure of anomalies in two dimensions and show that the two-dimensional stress-energy tensor can be reproduced by integrating the conformal and gravitational anomalies. We study the black hole entropy in theories with a gravitational Chern-Simons term and find that the usual Bekenstein-Hawking entropy is modified. For the BTZ black hole the modification is determined by area of the inner horizon. We show that the total entropy of the BTZ black hole is precisely reproduced in a boundary CFT calculation using the Cardy formula.Comment: 19 pages, Latex; v3: minor corrections, some clarification

    Holographic (De)confinement Transitions in Cosmological Backgrounds

    Full text link
    For type IIB supergravity with a running axio-dilaton, we construct bulk solutions which admit a cosmological background metric of Friedmann-Robertson-Walker type. These solutions include both a dark radiation term in the bulk as well as a four-dimensional (boundary) cosmological constant, while gravity at the boundary remains non-dynamical. We holographically calculate the stress-energy tensor, showing that it consists of two contributions: The first one, generated by the dark radiation term, leads to the thermal fluid of N = 4 SYM theory, while the second, the conformal anomaly, originates from the boundary cosmological constant. Conservation of the boundary stress tensor implies that the boundary cosmological constant is time-independent, such that there is no exchange between the two stress-tensor contributions. We then study (de)confinement by evaluating the Wilson loop in these backgrounds. While the dark radiation term favours deconfinement, a negative cosmological constant drives the system into a confined phase. When both contributions are present, we find an oscillating universe with negative cosmological constant which undergoes periodic (de)confinement transitions as the scale of three space expands and re-contracts.Comment: 31 pages, 5 figures, v2: Reference adde

    Cosmology from an AdS Schwarzschild black hole via holography

    Full text link
    We derive the equations of cosmological evolution from an AdS Schwarzschild black hole via holographic renormalization with appropriate boundary conditions.Comment: 6 page

    The volume of causal diamonds, asymptotically de Sitter space-times and irreversibility

    Full text link
    In this note we prove that the volume of a causal diamond associated with an inertial observer in asymptotically de Sitter 4-dimensional space-time is monotonically increasing function of cosmological time. The asymptotic value of the volume is that of in maximally symmetric de Sitter space-time. The monotonic property of the volume is checked in two cases: in vacuum and in the presence of a massless scalar field. In vacuum, the volume flow (with respect to cosmological time) asymptotically vanishes if and only if future space-like infinity is 3-manifold of constant curvature. The volume flow thus represents irreversibility of asymptotic evolution in spacetimes with positive cosmological constant.Comment: 15 pages, no figures; v.2: conjecture 1 on p. 11 made more precise; version published in jhe

    Late time solutions for inhomogeneous Lambda-CDM cosmology, their characterization and observation

    Full text link
    Assuming homogeneous isotropic Lambda-CDM cosmology allows Lambda, spatial curvature and dark matter density to be inferred from large scale structure observations such as supernovae. The purpose of this paper is to extend this to allow observations to measure or constrain inhomogeneity and anisotropy. We obtain the general inhomogeneous anisotropic Lambda-CDM solution which is locally asymptotic to an expanding de Sitter solution as a late time expansion using Starobinsky's method (analogous to the `holographic renormalization' technique in AdS/CFT) together with a resummation of the series. The dark matter is modeled as perfect dust fluid. The terms in the expansion systematically describe inhomogeneous and anisotropic deformations of an expanding FLRW solution, and are given as a spatial derivative expansion in terms of data characterizing the solution - a 3-metric and a perturbation of that 3-metric. Leading terms describe inhomogeneity and anisotropy on the scale set by the cosmological constant, approximately the horizon scale today. Higher terms in the expansion describe shorter scale variations. We compute the luminosity distance-redshift relation and argue that comparison with current and future observation would allow a partial reconstruction of the characterizing data. We also comment on smoothing these solutions noting that geometric flows (such as Ricci flow) applied to the characterizing data provide a canonical averaging method.Comment: 15 pages, 2 figures; v2: minor corrections and improvements, references adde

    Compactifications of conformal gravity

    Full text link
    We study conformal theories of gravity, i.e. those whose action is invariant under the local transformation g_{\mu\nu} -> \omega^2 (x) g_{\mu\nu}. As is well known, in order to obtain Einstein gravity in 4D it is necessary to introduce a scalar compensator with a VEV that spontaneously breaks the conformal invariance and generates the Planck mass. We show that the compactification of extra dimensions in a higher dimensional conformal theory of gravity also yields Einstein gravity in lower dimensions, without the need to introduce the scalar compensator. It is the field associated with the size of the extra dimensions (the radion) who takes the role of the scalar compensator in 4D. The radion has in this case no physical excitations since they are gauged away in the Einstein frame for the metric. In these models the stabilization of the size of the extra dimensions is therefore automatic.Comment: 13 page

    Gravity, Two Times, Tractors, Weyl Invariance and Six Dimensional Quantum Mechanics

    Full text link
    Fefferman and Graham showed some time ago that four dimensional conformal geometries could be analyzed in terms of six dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein's equations are then equivalent to the existence of a parallel scale tractor (a six component vector subject to a certain first order covariant constancy condition at every point in four dimensional spacetime). These results suggest a six dimensional description of four dimensional physics, a viewpoint promulgated by the two times physics program of Bars. The Fefferman--Graham construction relies on a triplet of operators corresponding, respectively to a curved six dimensional light cone, the dilation generator and the Laplacian. These form an sp(2) algebra which Bars employs as a first class algebra of constraints in a six-dimensional gauge theory. In this article four dimensional gravity is recast in terms of six dimensional quantum mechanics by melding the two times and tractor approaches. This "parent" formulation of gravity is built from an infinite set of six dimensional fields. Successively integrating out these fields yields various novel descriptions of gravity including a new four dimensional one built from a scalar doublet, a tractor vector multiplet and a conformal class of metrics.Comment: 27 pages, LaTe

    Smooth extensions of functions on separable Banach spaces

    Full text link
    Let XX be a Banach space with a separable dual XX^{*}. Let YXY\subset X be a closed subspace, and f:YRf:Y\to\mathbb{R} a C1C^{1}-smooth function. Then we show there is a C1C^{1} extension of ff to XX.Comment: 19 pages. This version fixes a gap in the previous proof of Theorem 1 by providing a sharp version of Lemma
    corecore