89 research outputs found

    Pneumococcal Gene Complex Involved in Resistance to Extracellular Oxidative Stress

    Get PDF
    Streptococcus pneumoniae is a Gram-positive bacterium which is a member of the normal human nasopharyngeal flora but can also cause serious disease such as pneumonia, bacteremia, and meningitis. Throughout its life cycle, S. pneumoniae is exposed to significant oxidative stress derived from endogenously produced hydrogen peroxide (H2O2) and from the host through the oxidative burst. How S. pneumoniae, an aerotolerant anaerobic bacterium that lacks catalase, protects itself against hydrogen peroxide stress is still unclear. Bioinformatic analysis of its genome identified a hypothetical open reading frame belonging to the thiol-specific antioxidant (TlpA/TSA) family, located in an operon consisting of three open reading frames. For all four strains tested, deletion of the gene resulted in an approximately 10-fold reduction in survival when strains were exposed to external peroxide stress. However, no role for this gene in survival of internal superoxide stress was observed. Mutagenesis and complementation analysis demonstrated that all three genes are necessary and sufficient for protection against oxidative stress. Interestingly, in a competitive index mouse pneumonia model, deletion of the operon had no impact shortly after infection but was detrimental during the later stages of disease. Thus, we have identified a gene complex involved in the protection of S. pneumoniae against external oxidative stress, which plays an important role during invasive disease.

    A comprehensive study of geothermal heating and cooling systems

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.scs.2018.09.036� 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Geothermal heat is an energy source that is local, reliable, resilient, environmentally-friendly, and sustainable. This natural energy is produced from the heat within the earth, and has different applications, such as heating and cooling of buildings, generating electricity, providing warm/cold water for agricultural products in greenhouses, and balneological use. Geothermal energy is not dependent on weather or climate and can supply heat and electricity almost continuously throughout the year. It may even be possible to use geothermal projects as �thermal batteries�, wherein waste or collected heat is stored for future use, even seasonal use, making geothermal energy �renewable� at a time scale of years. Extensive research has been carried out on different technologies and applications of geothermal energy, but comprehensive assessment of geothermal heating and cooling systems is relevant because of changing understanding, scale of application, and technology evolution. This study presents a general overview of geothermal heating and cooling systems. We provide an introduction to energy and the environment as well as the relationship between them; a brief history of geothermal energy; a discussion of district energy systems; a review of geothermal heating and cooling systems; a survey of geothermal energy distribution systems; an overview of ground source heat pumps; and, a discussion of ground heat exchangers. Recognition and accommodation of several factors addressed and discussed in our review will enhance the design and implementation of any geothermal heating or cooling system

    Bath Breakfast Project (BBP) - Examining the role of extended daily fasting in human energy balance and associated health outcomes: Study protocol for a randomised controlled trial [ISRCTN31521726]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current guidance regarding the role of daily breakfast in human health is largely grounded in cross-sectional observations. However, the causal nature of these relationships has not been fully explored and what limited information is emerging from controlled laboratory-based experiments appears inconsistent with much existing data. Further progress in our understanding therefore requires a direct examination of how daily breakfast impacts human health under free-living conditions.</p> <p>Methods/Design</p> <p>The Bath Breakfast Project (BBP) is a randomised controlled trial comparing the effects of daily breakfast consumption relative to extended fasting on energy balance and human health. Approximately 70 men and women will undergo extensive laboratory-based assessments of their acute metabolic responses under fasted and post-prandial conditions, to include: resting metabolic rate, substrate oxidation, dietary-induced thermogenesis and systemic concentrations of key metabolites/hormones. Physiological and psychological indices of appetite will also be monitored both over the first few hours of the day (i.e. whether fed or fasted) and also following a standardised test lunch used to assess voluntary energy intake under controlled conditions. Baseline measurements of participants' anthropometric characteristics (e.g. DEXA) will be recorded prior to intervention, along with an oral glucose tolerance test and acquisition of adipose tissue samples to determine expression of key genes and estimates of tissue-specific insulin action. Participants will then be randomly assigned either to a group prescribed an energy intake of ≥3000 kJ before 1100 each day or a group to extend their overnight fast by abstaining from ingestion of energy-providing nutrients until 1200 each day, with all laboratory-based measurements followed-up 6 weeks later. Free-living assessments of energy intake (via direct weighed food diaries) and energy expenditure (via combined heart-rate/accelerometry) will be made during the first and last week of intervention, with continuous glucose monitors worn both to document chronic glycaemic responses to the intervention and to verify compliance.</p> <p>Trial registration</p> <p>Current Controlled Trials <a href="http://www.controlled-trials.com/ISRCTN31521726">ISRCTN31521726</a>.</p

    Dietary factors associated with metabolic syndrome in Brazilian adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic Syndrome (MS) is defined as the association of numerous factors that increase cardiovascular risk and diet is one of the main factors related to increase the MS in the population. This study aimed to evaluate the association of diet on the presence of MS in an adult population sample.</p> <p>Methodology</p> <p>305 adults were clinically screened to participate in a lifestyle modification program. Anthropometric assessments included waist circumference (WC), body fat and calculated BMI (kg/m<sup>2</sup>) and muscle-mass index (MMI kg/m<sup>2</sup>). Dietary intake was estimated by 24 h dietary recall. Fasting blood was used for biochemical analysis. MS was diagnosed using NCEP-ATPIII (2001) criteria with adaptation for glucose (≥ 100 mg/dL). Logistic regression (Odds ratio) was performed in order to determine the odds ratio for developing MS according to dietary intake.</p> <p>Results</p> <p>An adequate intake of fruits, OR = 0.52 (CI:0.28-0.98), and an intake of more than 8 different items in the diet (variety), OR = 0.31 (CI:0.12-0.79) showed to be a protective factor against a diagnosis of MS. Saturated fat intake greater than 10% of total caloric value represented a risk for MS diagnosis, OR = 2.0 (1.04-3.84).</p> <p>Conclusion</p> <p>Regarding the dietary aspect, a risk factor for MS was higher intake of saturated fat, and protective factors were high diet variety and adequate fruit intake.</p

    Comparison of diet consumption, body composition and lipoprotein lipid values of Kuwaiti fencing players with international norms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No published data is currently available that describes the dietary patterns or physiological profiles of athletes participating on the Kuwaiti national fencing team and its potential impact on health and physical performance. The purpose of this investigation was to: 1) collect baseline data on nutrient intake 2) collect, analyze and report baseline for body composition, plasma lipid and lipoprotein concentrations during the competitive season, 3) compare the results with the international norms, 4) and provide necessary health and nutritional information in order to enhance the athletes' performance and skills.</p> <p>Methods</p> <p>Fifteen national-class fencers 21.5 ± 2.6 years of age participated in this study. Food intake was measured using a 3-day food record. Body composition was estimated using both the BOD POD and Body Mass Index (BMI). Total blood lipid profiles and maximum oxygen consumption was measured for each of the subjects during the competitive season.</p> <p>Results</p> <p>The results of the present study showed significant differences in dietary consumption in comparison with the recommended dietary allowances (RDA). The blood lipids profile and body composition (BMI and % body fat) were in normal range in comparison with international norms However, the average VO<sub>2 max </sub>value was less than the value of the other fencers.</p> <p>Conclusion</p> <p>Due to the results of the research study, a dietary regimen can be designed that would better enhance athletic performance and minimize any health risks associated with nutrition. Percent body fat and BMI will also be categorized for all players. In addition, the plasma blood tests will help to determine if any of the players have an excessive level of lipids or any blood abnormalities. The outcomes of present study will have a direct impact on the players health and therefore their skills and athletic performance.</p

    Molecular mechanisms and cellular functions of cGAS-STING signalling

    Get PDF
    The cGAS–STING signalling axis, comprising the synthase for the second messenger cyclic GMP–AMP (cGAS) and the cyclic GMP–AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS–STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS–STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome- dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid–liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS–STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved

    Soil-root interaction and effects on slope stability analysis

    No full text
    This work combines the mechanical and hydrological effects of vegetation with a slope stability framework. The analysis provides further understanding of the effects of vegetation on slope stability analysis. From the results obtained, trees contribute to the stability of sloping ground both hydrologically as a result of increase in matric suction of the soil resulting in a increase in the shear strength while mechanically is due to root reinforcement, the shear strength of the rooted soil mass is enhanced due to the presence of a root matrix. It is found that the most significant benefit is likely to be achieved only when the tree is located at the toe of the slope. The results indicate that the Factor of Safety against failure can increase by more than 8% when including the influence of a mature tree located at toe of a slope. The results also indicate that the mechanical contribution to strength offered by vegetation is much greater than the influence of hydrological effects

    PHP4 EFFECTIVENESS OF TWO POLICIES TO REDUCE DIPHENOXYLATE CONSUMPTION IN IRAN

    Get PDF
    corecore