319 research outputs found

    Evolution and Nucleosynthesis of Zero Metal Intermediate Mass Stars

    Get PDF
    New stellar models with mass ranging between 4 and 8 Mo, Z=0 and Y=0.23 are presented. The models have been evolved from the pre Main Sequence up to the Asymptotic Giant Branch (AGB). At variance with previous claims, we find that these updated stellar models do experience thermal pulses in the AGB phase. In particular we show that: a) in models with mass larger than 6 Mo, the second dredge up is able to raise the CNO abundance in the envelope enough to allow a "normal" AGB evolution, in the sense that the thermal pulses and the third dredge up settle on; b) in models of lower mass, the efficiency of the CNO cycle in the H-burning shell is controlled by the carbon produced locally via the 3alpha reactions. Nevertheless the He-burning shell becomes thermally unstable after the early AGB. The expansion of the overlying layers induced by these weak He-shell flashes is not sufficient by itself to allow a deep penetration of the convective envelope. However, immediately after that, the maximum luminosity of the He flash is attained and a convective shell systematically forms at the base of the H-rich envelope. The innermost part of this convective shell probably overlaps the underlying C-rich region left by the inter-shell convection during the thermal pulse, so that fresh carbon is dredged up in a "hot" H-rich environment and a H flash occurs. This flash favours the expansion of the outermost layers already started by the weak thermal pulse and a deeper penetration of the convective envelope takes place. Then, the carbon abundance in the envelope rises to a level high enough that the further evolution of these models closely resembles that of more metal rich AGB stars. These stars provide an important source of primary carbon and nitrogen.Comment: 28 pages, 5 tables and 17 figures. Accepted for publication in Ap

    An efficient scheme for numerical simulations of the spin-bath decoherence

    Get PDF
    We demonstrate that the Chebyshev expansion method is a very efficient numerical tool for studying spin-bath decoherence of quantum systems. We consider two typical problems arising in studying decoherence of quantum systems consisting of few coupled spins: (i) determining the pointer states of the system, and (ii) determining the temporal decay of quantum oscillations. As our results demonstrate, for determining the pointer states, the Chebyshev-based scheme is at least a factor of 8 faster than existing algorithms based on the Suzuki-Trotter decomposition. For the problems of second type, the Chebyshev-based approach has been 3--4 times faster than the Suzuki-Trotter-based schemes. This conclusion holds qualitatively for a wide spectrum of systems, with different spin baths and different Hamiltonians.Comment: 8 pages (RevTeX), 3 EPS figure

    Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption

    Get PDF
    International Journal of Exercise Science 10(7): 942-953, 2017. Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise

    A single low-energy, iron-poor supernova as the source of metals in the star SMSS J 031300.36-670839.3

    Get PDF
    The element abundance ratios of four low-mass stars with extremely low metallicities indicate that the gas out of which the stars formed was enriched in each case by at most a few, and potentially only one low-energy, supernova. Such supernovae yield large quantities of light elements such as carbon but very little iron. The dominance of low-energy supernovae is surprising, because it has been expected that the first stars were extremely massive, and that they disintegrated in pair-instability explosions that would rapidly enrich galaxies in iron. What has remained unclear is the yield of iron from the first supernovae, because hitherto no star is unambiguously interpreted as encapsulating the yield of a single supernova. Here we report the optical spectrum of SMSS J031300.36- 670839.3, which shows no evidence of iron (with an upper limit of 10^-7.1 times solar abundance). Based on a comparison of its abundance pattern with those of models, we conclude that the star was seeded with material from a single supernova with an original mass of ~60 Mo (and that the supernova left behind a black hole). Taken together with the previously mentioned low-metallicity stars, we conclude that low-energy supernovae were common in the early Universe, and that such supernovae yield light element enrichment with insignificant iron. Reduced stellar feedback both chemically and mechanically from low-energy supernovae would have enabled first-generation stars to form over an extended period. We speculate that such stars may perhaps have had an important role in the epoch of cosmic reionization and the chemical evolution of early galaxies.Comment: 28 pages, 6 figures, Natur

    First Stars. I. Evolution without mass loss

    Full text link
    The first generation of stars was formed from primordial gas. Numerical simulations suggest that the first stars were predominantly very massive, with typical masses M > 100 Mo. These stars were responsible for the reionization of the universe, the initial enrichment of the intergalactic medium with heavy elements, and other cosmological consequences. In this work, we study the structure of Zero Age Main Sequence stars for a wide mass and metallicity range and the evolution of 100, 150, 200, 250 and 300 Mo galactic and pregalactic Pop III very massive stars without mass loss, with metallicity Z=10E-6 and 10E-9, respectively. Using a stellar evolution code, a system of 10 equations together with boundary conditions are solved simultaneously. For the change of chemical composition, which determines the evolution of a star, a diffusion treatment for convection and semiconvection is used. A set of 30 nuclear reactions are solved simultaneously with the stellar structure and evolution equations. Several results on the main sequence, and during the hydrogen and helium burning phases, are described. Low metallicity massive stars are hotter and more compact and luminous than their metal enriched counterparts. Due to their high temperatures, pregalactic stars activate sooner the triple alpha reaction self-producing their own heavy elements. Both galactic and pregalactic stars are radiation pressure dominated and evolve below the Eddington luminosity limit with short lifetimes. The physical characteristics of the first stars have an important influence in predictions of the ionizing photon yields from the first luminous objects; also they develop large convective cores with important helium core masses which are important for explosion calculations.Comment: 17 pages, 24 figures, 2 table

    Results and perspectives of the solar axion search with the CAST experiment

    Full text link
    The status of the solar axion search with the CERN Axion Solar Telescope (CAST) will be presented. Recent results obtained by the use of 3^3He as a buffer gas has allowed us to extend our sensitivity to higher axion masses than our previous measurements with 4^4He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eVma \le m_{a} \le 0.64 eV. From the absence of an excess of x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ2.3×1010_{a\gamma} \le 2.3\times 10^{-10} GeV1^{-1} at 95% C.L., the exact value depending on the pressure setting. CAST published results represent the best experimental limit on the photon couplings to axions and other similar exotic particles dubbed WISPs (Weakly Interacting Slim Particles) in the considered mass range and for the first time the limit enters the region favored by QCD axion models. Preliminary sensitivities for axion masses up to 1.16 eV will also be shown reaching mean upper limits on the axion-photon coupling of gaγ3.5×1010_{a\gamma} \le 3.5\times 10^{-10} GeV1^{-1} at 95% C.L. Expected sensibilities for the extension of the CAST program up to 2014 will be presented. Moreover long term options for a new helioscope experiment will be evoked.Comment: 4 pages, 2 pages, to appear in the proceedings of the 24th Rencontres de Blois V2 A few affiliations were not corrected in previous version V3 Author adde

    Solar Models: current epoch and time dependences, neutrinos, and helioseismological properties

    Get PDF
    We calculate accurate solar models and report the detailed time dependences of important solar quantities. We use helioseismology to constrain the luminosity evolution of the sun and report the discovery of semi-convection in evolved solar models that include diffusion. In addition, we compare the computed sound speeds with the results of p-mode observations by BiSON, GOLF, GONG, LOWL, and MDI instruments. We contrast the neutrino predictions from a set of eight standard-like solar models and four deviant (or deficient) solar models with the results of solar neutrino experiments. For solar neutrino and for helioseismological applications, we present present-epoch numerical tabulations of characteristics of the standard solar model as a function of solar radius, including the principal physical and composition variables, sound speeds, neutrino fluxes, and functions needed for calculating solar neutrino oscillations.Comment: Accepted ApJ. Have used refined satellite value for solar luminosity. Changes slightly best neutrino fluxes. Include new references, number density of scatterers of sterile neutrinos, some additional helioseismological predictions. 70 pages, 16 figures, additional material at http://www.sns.ias.edu/~jn

    Seamounts

    Get PDF
    Definition: Seamounts are literally mountains rising from the seafloor. More specifically, they are “any geographically isolated topographic feature on the seafloor taller than 100 m, including ones whose summit regions may temporarily emerge above sea level, but not including features that are located on continental shelves or that are part of other major landmasses” (Staudigel et al., 2010). The term “guyot” can be used for seamounts having a truncated cone shape with a flat summit produced by erosion at sea level (Hess, 1946), development of carbonate reefs (e.g., Flood, 1999), or partial collapse due to caldera formation (e.g., Batiza et al., 1984). Seamounts <1,000 m tall are sometimes referred to as “knolls” (e.g., Hirano et al., 2008). “Petit spots” are a newly discovered subset of sea knolls confined to the bulge of subducting oceanic plates of oceanic plates seaward of deep-sea trenches (Hirano et al., 2006)
    corecore