597 research outputs found

    Green's function for the Hodge Laplacian on some classes of Riemannian and Lorentzian symmetric spaces

    Full text link
    We compute the Green's function for the Hodge Laplacian on the symmetric spaces M\times\Sigma, where M is a simply connected n-dimensional Riemannian or Lorentzian manifold of constant curvature and \Sigma is a simply connected Riemannian surface of constant curvature. Our approach is based on a generalization to the case of differential forms of the method of spherical means and on the use of Riesz distributions on manifolds. The radial part of the Green's function is governed by a fourth order analogue of the Heun equation.Comment: 18 page

    A remark on an overdetermined problem in Riemannian Geometry

    Full text link
    Let (M,g)(M,g) be a Riemannian manifold with a distinguished point OO and assume that the geodesic distance dd from OO is an isoparametric function. Let ΩM\Omega\subset M be a bounded domain, with OΩO \in \Omega, and consider the problem Δpu=1\Delta_p u = -1 in Ω\Omega with u=0u=0 on Ω\partial \Omega, where Δp\Delta_p is the pp-Laplacian of gg. We prove that if the normal derivative νu\partial_{\nu}u of uu along the boundary of Ω\Omega is a function of dd satisfying suitable conditions, then Ω\Omega must be a geodesic ball. In particular, our result applies to open balls of Rn\mathbb{R}^n equipped with a rotationally symmetric metric of the form g=dt2+ρ2(t)gSg=dt^2+\rho^2(t)\,g_S, where gSg_S is the standard metric of the sphere.Comment: 8 pages. This paper has been written for possible publication in a special volume dedicated to the conference "Geometric Properties for Parabolic and Elliptic PDE's. 4th Italian-Japanese Workshop", organized in Palinuro in May 201

    An ISS Small-Gain Theorem for General Networks

    Full text link
    We provide a generalized version of the nonlinear small-gain theorem for the case of more than two coupled input-to-state stable (ISS) systems. For this result the interconnection gains are described in a nonlinear gain matrix and the small-gain condition requires bounds on the image of this gain matrix. The condition may be interpreted as a nonlinear generalization of the requirement that the spectral radius of the gain matrix is less than one. We give some interpretations of the condition in special cases covering two subsystems, linear gains, linear systems and an associated artificial dynamical system.Comment: 26 pages, 3 figures, submitted to Mathematics of Control, Signals, and Systems (MCSS

    Supersymmetric Many-particle Quantum Systems with Inverse-square Interactions

    Full text link
    The development in the study of supersymmetric many-particle quantum systems with inverse-square interactions is reviewed. The main emphasis is on quantum systems with dynamical OSp(2|2) supersymmetry. Several results related to exactly solved supersymmetric rational Calogero model, including shape invariance, equivalence to a system of free superoscillators and non-uniqueness in the construction of the Hamiltonian, are presented in some detail. This review also includes a formulation of pseudo-hermitian supersymmetric quantum systems with a special emphasis on rational Calogero model. There are quite a few number of many-particle quantum systems with inverse-square interactions which are not exactly solved for a complete set of states in spite of the construction of infinitely many exact eigen functions and eigenvalues. The Calogero-Marchioro model with dynamical SU(1,1|2) supersymmetry and a quantum system related to short-range Dyson model belong to this class and certain aspects of these models are reviewed. Several other related and important developments are briefly summarized.Comment: LateX, 65 pages, Added Acknowledgment, Discussions and References, Version to appear in Jouranl of Physics A: Mathematical and Theoretical (Commissioned Topical Review Article

    Physics and Mathematics of Calogero particles

    Get PDF
    We give a review of the mathematical and physical properties of the celebrated family of Calogero-like models and related spin chains.Comment: Version to appear in Special Issue of Journal of Physics A: Mathematical and Genera

    The structure of fluid trifluoromethane and methylfluoride

    Full text link
    We present hard X-ray and neutron diffraction measurements on the polar fluorocarbons HCF3 and H3CF under supercritical conditions and for a range of molecular densities spanning about a factor of ten. The Levesque-Weiss-Reatto inversion scheme has been used to deduce the site-site potentials underlying the measured partial pair distribution functions. The orientational correlations between adjacent fluorocarbon molecules -- which are characterized by quite large dipole moments but no tendency to form hydrogen bonds -- are small compared to a highly polar system like fluid hydrogen chloride. In fact, the orientational correlations in HCF3 and H3CF are found to be nearly as small as those of fluid CF4, a fluorocarbon with no dipole moment.Comment: 11 pages, 9 figure

    ECMO Weaning Strategies to Optimize Outcomes

    Get PDF

    Frequency behavior of Raman coupling coefficient in glasses

    Full text link
    Low-frequency Raman coupling coefficient of 11 different glasses is evaluated. It is found that the coupling coefficient demonstrates a universal linear frequency behavior near the boson peak maximum and a superlinear behavior at very low frequencies. The last observation suggests vanishing of the coupling coefficient when frequency tends to zero. The results are discussed in terms of the vibration wavefunction that combines features of localized and extended modes.Comment: 8 pages, 9 figure
    corecore