36 research outputs found

    Lensing and shadow of a black hole surrounded by a heavy accretion disk

    No full text
    We consider a static, axially symmetric spacetime describing the superposition of a Schwarzschild black hole (BH) with a thin and heavy accretion disk. The BH-disk configuration is a solution of the Einstein field equations within the Weyl class. The disk is sourced by a distributional energy-momentum tensor and it is located at the equatorial plane. It can be interpreted as two streams of counter-rotating particles, yielding a total vanishing angular momentum. The phenomenology of the composed system depends on two parameters: the fraction of the total mass in the disk, mm, and the location of the inner edge of the disk, aa. We start by determining the sub-region of the space of parameters wherein the solution is physical, by requiring the velocity of the disk particles to be sub-luminal and real. Then, we study the null geodesic flow by performing backwards ray-tracing under two scenarios. In the first scenario the composed system is illuminated by the disk and in the second scenario the composed system is illuminated by a far-away celestial sphere. Both cases show that, as mm grows, the shadow becomes more prolate. Additionally, the first scenario makes clear that as mm grows, for fixed aa, the geometrically thin disk appears optically enlarged, i.e., thicker, when observed from the equatorial plane. This is to due to light rays that are bent towards the disk, when backwards ray traced. In the second scenario, these light rays can cross the disk (which is assumed to be transparent) and may oscillate up to a few times before reaching the far away celestial sphere. Consequently, an almost equatorial observer sees different patches of the sky near the equatorial plane, as a chaotic "mirage". As m0m\rightarrow 0 one recovers the standard test, i.e., negligible mass, disk appearance

    Matrix Metalloproteinases and Bladder Cancer : What is New?

    Get PDF
    Urothelial bladder cancer represents a heterogeneous disease with divergent pathways of tumorigenesis. Tumor invasion and progression are a multifactorial process promoted by microenvironmental changes that include overexpression of matrix metalloproteinases (MMPs). Recent data clearly challenge the classic dogma that MMPs promote metastasis only by modulating the remodeling of extracellular matrix. Indeed, MMPs have also been attributed as an impact on tumor cell behavior in vivo as a consequence of their ability to cleave growth factors, cell surface receptors, cell adhesion molecules, and chemokines/cytokines. Levels of the different MMPs can be measured in several sample types, including tissue, blood (serum and plasma), and urine, and using different methodologies, such as immunohistochemistry, real-time PCR, western and northern blot analyses, enzyme-linked immunosorbent assay, and zymography. Several MMPs have been identified as having potential diagnostic or prognostic utility, whether alone or in combination with cytology. Although MMP inhibitors have shown limited efficacy, advances in the understanding of the complex physiologic and pathologic roles of MMPs might permit the development of new MMP-specific and tumor-specific therapies. In this paper we update the understanding of MMPs based on a systematic PubMed search encompassing papers published up to December 2011

    Femtometer Toroidal Structures in Nuclei

    Get PDF
    The two-nucleon density distributions in states with isospin T=0T=0, spin SS=1 and projection MSM_S=0 and ±\pm1 are studied in 2^2H, 3,4^{3,4}He, 6,7^{6,7}Li and 16^{16}O. The equidensity surfaces for MSM_S=0 distributions are found to be toroidal in shape, while those of MSM_S=±\pm1 have dumbbell shapes at large density. The dumbbell shapes are generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength at r<2r<2 fm in all these nuclei. They provide new insights and simple explanations of the structure and electromagnetic form factors of the deuteron, the quasi-deuteron model, and the dpdp, dddd and αd\alpha d LL=2 (DD-wave) components in 3^3He, 4^4He and 6^6Li. The toroidal distribution has a maximum-density diameter of \sim1 fm and a half-maximum density thickness of \sim0.9 fm. Many realistic models of nuclear forces predict these values, which are supported by the observed electromagnetic form factors of the deuteron, and also predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the rather small size of this structure, it could have a revealing relation to certain aspects of QCD.Comment: 35 pages in REVTeX, 25 PostScript figure

    Quantitative bioimaging of Ca, Fe, Cu and Zn in breast cancer tissues by LA-ICP-MS

    Full text link
    © The Royal Society of Chemistry 2017. In recent years, several studies have shown that concentrations of essential trace elements naturally present in breast tissues (e.g. Ca, Fe, Cu and Zn) may be significantly increased in breast cancer tissues. This is not surprising because essential elements are responsible for a great number of metabolic and biological processes. The essential trace elements may play some major functions in life: stabilizers, elements of structure, elements for hormonal function and cofactors in enzymes. In any case, the role of trace elements in breast cancer is complex, because it affects many types of molecules, cells and tissues. The combination of analytical and immunehistochemical assays is crucial for better understanding of the role of essential trace elements in promoting tumor growth and migration. Bioimaging analytical techniques with adequate spatial resolution are today of crucial interest to investigate the spatial distribution of trace elements and correlate them with histological aspects in breast tissues. In this vein, in this particular study the application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been used for the first time to investigate the actual distribution of the essential trace bioelements (Ca, Fe, Cu and Zn) in breast cancer tissues, and its possible application for tumor diagnostic and prognostic purposes. As has been demonstrated in this study, the levels of Ca, Fe, Cu and Zn in the tumor area are significantly higher than the levels found in the non-tumor one, as well as, a heterogeneous distribution of the investigated metals

    Matrix Metalloproteinases and Bladder Cancer : What is New?

    No full text
    Urothelial bladder cancer represents a heterogeneous disease with divergent pathways of tumorigenesis. Tumor invasion and progression are a multifactorial process promoted by microenvironmental changes that include overexpression of matrix metalloproteinases (MMPs). Recent data clearly challenge the classic dogma that MMPs promote metastasis only by modulating the remodeling of extracellular matrix. Indeed, MMPs have also been attributed as an impact on tumor cell behavior in vivo as a consequence of their ability to cleave growth factors, cell surface receptors, cell adhesion molecules, and chemokines/cytokines. Levels of the different MMPs can be measured in several sample types, including tissue, blood (serum and plasma), and urine, and using different methodologies, such as immunohistochemistry, real-time PCR, western and northern blot analyses, enzyme-linked immunosorbent assay, and zymography. Several MMPs have been identified as having potential diagnostic or prognostic utility, whether alone or in combination with cytology. Although MMP inhibitors have shown limited efficacy, advances in the understanding of the complex physiologic and pathologic roles of MMPs might permit the development of new MMP-specific and tumor-specific therapies. In this paper we update the understanding of MMPs based on a systematic PubMed search encompassing papers published up to December 2011

    MMP-11 as a biomarker for metastatic breast cancer by immunohistochemical-assisted imaging mass spectrometry

    Full text link
    © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. MMP-11 is a member of the matrix metalloproteinase family (MMPs) which are overexpressed in cancer cells, stromal cells and the adjacent microenvironment. The MMP protein family encompasses zinc-dependent endopeptidases that degrade the extracellular matrix (ECM), facilitating the breakdown of the basal membrane and matrix connective tissues. This function is believed to be important in cancer development and metastasis. This paper investigated a gold nanoparticle-based immunohistochemical assay to visualise the distribution of MMP-11 in human breast cancer tissues from eight patients with and without metastases by employing laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The expression of MMP-11 was increased and more heterogeneous in metastatic specimens compared to non-metastatic tumour samples. These findings demonstrate that imaging breast tumours by LA-ICP-MS may be a useful tool to aid the prognosis and treatment of breast cancer. As an example, samples of two patients are presented who were diagnosed with matching characteristics and grades of breast cancer. Although both patients had a similar prognosis and treatment, only one developed metastases
    corecore