86 research outputs found

    The importance of protein sources to support muscle anabolism in cancer: an expert group opinion

    Get PDF
    This opinion paper presents a short review of the potential impact of protein on muscle anabolism in cancer, which is associated with better patient outcomes. Protein source is a topic of interest for patients and clinicians, partly due to recent emphasis on the supposed non-beneficial effect of proteins; therefore, misconceptions involving animal-based (e.g., meat, fish, dairy) and plant-based (e.g., legumes) proteins in cancer are acknowledged and addressed. Although the optimal dietary amino acid composition to support muscle health in cancer is yet to be established, animal-based proteins have a composition that offers superior anabolic potential, compared to plant-derived proteins. Thus, animal-based foods should represent the majority (i.e., ≥65%) of protein intake during active cancer treatment. A diet rich in plant-derived proteins may support muscle anabolism in cancer, albeit requiring a larger quantity of protein to fulfill the optimal amino acid intake. We caution that translating dietary recommendations for cancer prevention to cancer treatment may be inadequate to support the pro-inflammatory and catabolic nature of the disease. We further caution against initiating an exclusively plant-based (i.e., vegan) diet upon a diagnosis of cancer, given the presence of elevated protein requirements and risk of inadequate protein intake to support muscle anabolism. Amino acid combination and the long-term sustainability of a dietary pattern void of animal-based foods requires careful and laborious management of protein intake for patients with cancer. Ultimately, a dietary amino acid composition that promotes muscle anabolism is optimally obtained through combination of animal- and plant-based protein sources.info:eu-repo/semantics/publishedVersio

    Relating industrial symbiosis and circular economy to the sustainable development debate

    Get PDF
    Industrial Symbiosis (IS) is a business-focused collaborative approach oriented towards resource efficiency that has been theorised and studied mainly over the last twenty-five years. Recently, IS seems to have found a renewed impetus in the framework of the Circular Economy (CE), a novel approach to sustainability and Sustainable Development (SD) that has been rapidly gaining momentum world-wide. This opening chapter of the book provides an introduction to the concepts of IS, CE and SD, and summarizes their complex evolutionary paths, recalling the rel-evant developments and implementation challenges. In addition, the authors point out the divergences and interrelations of these concepts, both among themselves and with other related concepts and research fields, such as industrial ecology, eco-logical modernization and the green economy. Furthermore, the potential contribu-tion of IS and the CE to SD is briefly discussed, also highlighting critical issues and trade-offs, as well as gaps in research and application, especially relating to the so-cial component of sustainability. Particular attention is given to the potential role of IS in the achievement of targets connected to the Sustainable Development Goals set in the UN Agenda 2030. The recent advances in the IS and CE discussion in the context of the SD research community are further explored, with particular empha-sis on the contribution of the International Sustainable Development Research So-ciety (ISDRS) and its 24th annual conference organised in Messina, Italy, in 2018. The programme of that conference, indeed, included specific tracks on the above-mentioned themes, the contents of which are briefly commented on here, after an overview on the whole conference and the main cross-cutting concepts emerged. In the last part of the chapter, a brief description of the chapters collected in the book is presented. These contributions describe and discuss theoretical frameworks, methodological approaches and/or experiences and case studies where IS and the principles of CE are applied in different geographical context and at different scales to ultimately improve the sustainability of the current production patterns

    Perioperative Nutrition: Recommendations from the ESPEN Expert Group

    Get PDF
    Background and aims: Malnutrition has been recognized as a major risk factor for adverse postoperative outcomes. The ESPEN Symposium on perioperative nutrition was held in Nottingham, UK, on 14-15 October 2018 and the aims of this document were to highlight the scientific basis for the nutritional and metabolic management of surgical patients. Methods: This paper represents the opinion of experts in this multidisciplinary field and those of a patient and caregiver, based on current evidence. It highlights the current state of the art. Results: Surgical patients may present with varying degrees of malnutrition, sarcopenia, cachexia, obesity and myosteatosis. Preoperative optimization can help improve outcomes. Perioperative fluid therapy should aim at keeping the patient in as near zero fluid and electrolyte balance as possible. Similarly, glycemic control is especially important in those patients with poorly controlled diabetes, with a stepwise increase in the risk of infectious complications and mortality per increasing HbA1c. Immobilization can induce a decline in basal energy expenditure, reduced insulin sensitivity, anabolic resistance to protein nutrition and muscle strength, all of which impair clinical outcomes. There is a role for pharmaconutrition, pre-, pro- and syn-biotics, with the evidence being stronger in those undergoing surgery for gastrointestinal cancer. Conclusions: Nutritional assessment of the surgical patient together with the appropriate interventions to restore the energy deficit, avoid weight loss, preserve the gut microbiome and improve functional performance are all necessary components of the nutritional, metabolic and functional conditioning of the surgical patient

    A review of zoonotic infection risks associated with the wild meat trade in Malaysia.

    Get PDF
    The overhunting of wildlife for food and commercial gain presents a major threat to biodiversity in tropical forests and poses health risks to humans from contact with wild animals. Using a recent survey of wildlife offered at wild meat markets in Malaysia as a basis, we review the literature to determine the potential zoonotic infection risks from hunting, butchering and consuming the species offered. We also determine which taxa potentially host the highest number of pathogens and discuss the significant disease risks from traded wildlife, considering how cultural practices influence zoonotic transmission. We identify 51 zoonotic pathogens (16 viruses, 19 bacteria and 16 parasites) potentially hosted by wildlife and describe the human health risks. The Suidae and the Cervidae families potentially host the highest number of pathogens. We conclude that there are substantial gaps in our knowledge of zoonotic pathogens and recommend performing microbial food safety risk assessments to assess the hazards of wild meat consumption. Overall, there may be considerable zoonotic risks to people involved in the hunting, butchering or consumption of wild meat in Southeast Asia, and these should be considered in public health strategies
    corecore