28 research outputs found

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    An Overview of Three Promising Mechanical, Optical, and Biochemical Engineering Approaches to Improve Selective Photothermolysis of Refractory Port Wine Stains

    Get PDF
    During the last three decades, several laser systems, ancillary technologies, and treatment modalities have been developed for the treatment of port wine stains (PWSs). However, approximately half of the PWS patient population responds suboptimally to laser treatment. Consequently, novel treatment modalities and therapeutic techniques/strategies are required to improve PWS treatment efficacy. This overview therefore focuses on three distinct experimental approaches for the optimization of PWS laser treatment. The approaches are addressed from the perspective of mechanical engineering (the use of local hypobaric pressure to induce vasodilation in the laser-irradiated dermal microcirculation), optical engineering (laser-speckle imaging of post-treatment flow in laser-treated PWS skin), and biochemical engineering (light- and heat-activatable liposomal drug delivery systems to enhance the extent of post-irradiation vascular occlusion)

    Endoplasmic Reticulum-Derived Multilamellar Bodies in Oocytes of Mouse Follicle Cultures under Oxidized Low-Density Lipoprotein Treatment

    No full text
    Spanel-Borowski K, Nowicki M, Borlak J, Trapphoff T, Eichenlaub-Ritter U. Endoplasmic Reticulum-Derived Multilamellar Bodies in Oocytes of Mouse Follicle Cultures under Oxidized Low-Density Lipoprotein Treatment. Cells Tissues Organs. 2013;197(1):77-88.Objective: Multilamellar bodies associated with an organized endoplasmic reticulum (ER) arise in various somatic cell types, and a subtype called multivesicular bodies is described in oocytes. Both entities, so far undetermined in significance, may occur in oocytes of follicles under oxidative stress. In preovulatory follicles, oxidative stress appears to be caused by oxidized low-density lipoprotein (ox-LDL). Method: Cultures of preantral mouse follicles were treated with 100 mu g/ml ox-LDL or normal LDL (n-LDL) for 12-48 h or for 12 days during antral follicle growth followed by in vitro ovulation and harvest of cumulus oophorus complexes (COCs) with metaphase II (MII) oocytes on day 13. Preantral follicles, COCs, or MII oocytes were immunostained with anti-tubulin antibody or stained with actin-binding phalloidin for confocal microscopy. Ultrathin sections were prepared for electron microscopy. Results: Preantral follicles exposed to nLDL or ox-LDL developed normally, and MII oocytes in COCs possessed normal spindles with well-aligned chromosomes. In contrast, treated cumulus cells underwent apoptosis. Only the ox-LDL-treated preantral follicle oocytes showed ER-derived multilamellar bodies (EMBs) of type I, consisting of rough ER membranes for the envelope. The MII oocytes of COCs showed type II EMBs consisting of smooth/vesicular ER and were more prominent after ox-LDL than after n-LDL exposure. Degenerating mitochondria were prominent in oocytes of the ox-LDL group and judged as a sign of oxidative stress. Conclusion: Oxidative stress presumably induces damage of proteins and organelles in the oocytes. The EMBs might sequester the damaged structures for oocyte survival. Thus, EMBs could represent a novel form of autophagy. Copyright (C) 2012 S. Karger AG, Base
    corecore