25 research outputs found

    Bribeproof mechanisms for two-values domains

    Full text link
    Schummer (Journal of Economic Theory 2000) introduced the concept of bribeproof mechanism which, in a context where monetary transfer between agents is possible, requires that manipulations through bribes are ruled out. Unfortunately, in many domains, the only bribeproof mechanisms are the trivial ones which return a fixed outcome. This work presents one of the few constructions of non-trivial bribeproof mechanisms for these quasi-linear environments. Though the suggested construction applies to rather restricted domains, the results obtained are tight: For several natural problems, the method yields the only possible bribeproof mechanism and no such mechanism is possible on more general domains.Comment: Extended abstract accepted to SAGT 2016. This ArXiv version corrects typos in the proofs of Theorem 7 and Claims 28-29 of prior ArXiv versio

    Utilitarian Mechanism Design for Multiobjective Optimization

    Get PDF
    In a classic optimization problem, the complete input data is assumed to be known to the algorithm. This assumption may not be true anymore in optimization problems motivated by the Internet where part of the input data is private knowledge of independent selfish agents. The goal of algorithmic mechanism design is to provide (in polynomial time) a solution to the optimization problem and a set of incentives for the agents such that disclosing the input data is a dominant strategy for the agents. In the case of NP-hard problems, the solution computed should also be a good approximation of the optimum. In this paper we focus on mechanism design for multiobjective optimization problems. In this setting we are given a main objective function and a set of secondary objectives which are modeled via budget constraints. Multiobjective optimization is a natural setting for mechanism design as many economical choices ask for a compromise between different, partially conflicting goals. The main contribution of this paper is showing that two of the main tools for the design of approximation algorithms for multiobjective optimization problems, namely, approximate Pareto sets and Lagrangian relaxation, can lead to truthful approximation schemes. By exploiting the method of approximate Pareto sets, we devise truthful deterministic and randomized multicriteria fully polynomial-time approximation schemes (FPTASs) for multiobjective optimization problems whose exact version admits a pseudopolynomial-time algorithm, as, for instance, the multibudgeted versions of minimum spanning tree, shortest path, maximum (perfect) matching, and matroid intersection. Our construction also applies to multidimensional knapsack and multiunit combinatorial auctions. Our FPTASs compute a (1+Δ)(1+\varepsilon)-approximate solution violating each budget constraint by a factor (1+Δ)(1+\varepsilon). When feasible solutions induce an independence system, i.e., when subsets of feasible solutions are feasible as well, we present a PTAS (not violating any constraint), which combines the approach above with a novel monotone way to guess the heaviest elements in the optimum solution. Finally, we present a universally truthful Las Vegas PTAS for minimum spanning tree with a single budget constraint, where one wants to compute a minimum cost spanning tree whose length is at most a given value LL. This result is based on the Lagrangian relaxation method, in combination with our monotone guessing step and with a random perturbation step (ensuring low expected running time). This result can be derandomized in the case of integral lengths. All the mentioned results match the best known approximation ratios, which are, however, obtained by nontruthful algorithms

    On the Power of Randomization in Algorithmic Mechanism Design

    No full text

    Randomized truthful mechanisms for scheduling unrelated machines

    No full text
    Abstract. We study the scheduling problem on unrelated machines in the mechanism design setting. This problem was proposed and studied in the seminal paper of Nisan and Ronen [NR99], where they gave a 1.75-approximation randomized truthful mechanism for the case of two machines. We improve this result by a 1.6737-approximation randomized truthful mechanism. We also generalize our result to a 0.8368m-approximation mechanism for task scheduling with m machines, which improve the previous best upper bound of 0.875m[MS07]. 1

    Truthful Mechanism Design for Multidimensional Covering Problems

    No full text
    We investigate multidimensional covering mechanism-design problems, wherein there are m items that need to be covered and n agents who provide covering objects, with each agent i having a private cost for the covering objects he provides. The goal is to select a set of covering objects of minimum total cost that together cover all the items. We focus on two representative covering problems: uncapacitated facility location (UFL) and vertex cover (VC). For multidimensional UFL, we give a black-box method to transform any Lagrangian-multiplier-preserving ρ-approximation algorithm for UFL to a truthful-in-expectation, ρ-approx. mechanism. This yields the first result for multidimensional UFL, namely a truthful-in-expectation 2-approximation mechanism. For multidimensional VC (Multi-VC), we develop a decomposition method that reduces the mechanism-design problem into the simpler task of constructing threshold mechanisms, which are a restricted class of truthful mechanisms, for simpler (in terms of graph structure or problem dimension) instances of Multi-VC. By suitably designing the decomposition and the threshold mechanisms it uses as building blocks, we obtain truthful mechanisms with approximation ratios (n is the number of nodes): (1) O(log n) for Multi-VC on any minor-closed family of graphs; and (2) O(r 2 log n) for r-dimensional VC on any graph. These are the first truthful mechanisms for Multi-VC with non-trivial approximation guarantees

    Concise Bid Optimization Strategies with Multiple Budget Constraints

    No full text

    Private Capacities in Mechanism Design

    No full text
    corecore