366 research outputs found

    High count rate {\gamma}-ray spectroscopy with LaBr3:Ce scintillation detectors

    Full text link
    The applicability of LaBr3:Ce detectors for high count rate {\gamma}-ray spectroscopy is investigated. A 3"x3" LaBr3:Ce detector is used in a test setup with radioactive sources to study the dependence of energy resolution and photo peak efficiency on the overall count rate in the detector. Digitized traces were recorded using a 500 MHz FADC and analysed with digital signal processing methods. In addition to standard techniques a pile-up correction method is applied to the data in order to further improve the high-rate capabilities and to reduce the losses in efficiency due to signal pile-up. It is shown, that {\gamma}-ray spectroscopy can be performed with high resolution at count rates even above 1 MHz and that the performance can be enhanced in the region between 500 kHz and 10 MHz by using pile-up correction techniques

    Exact norm-conserving stochastic time-dependent Hartree-Fock

    Full text link
    We derive an exact single-body decomposition of the time-dependent Schroedinger equation for N pairwise-interacting fermions. Each fermion obeys a stochastic time-dependent norm-preserving wave equation. As a first test of the method we calculate the low energy spectrum of Helium. An extension of the method to bosons is outlined.Comment: 21 pages, 3 figures, LaTeX fil

    Statistical approach for unpolarized fragmentation functions for the octet baryons

    Full text link
    A statistical model for the parton distributions in the nucleon has proven its efficiency in the analysis of deep inelastic scattering data, so we propose to extend this approach to the description of unpolarized fragmentation functions for the octet baryons. The characteristics of the model are determined by using some data on the inclusive production of proton and Λ\Lambda in unpolarized deep inelastic scattering and a next-to-leading analysis of the available experimental data on the production of unpolarized octet baryons in e+ee^+e^- annihilation. Our results show that both parton distributions and fragmentation functions are compatible with the statistical approach, in terms of a few free parameters, whose interpretation will be discussed.Comment: 14 pages, 7 eps figures, to appear in Phys. Rev.

    Kinetics of photoinduced ordering in azo-dye films: two-state and diffusion models

    Full text link
    We study the kinetics of photoinduced ordering in the azo-dye SD1 photoaligning layers and present the results of modeling performed using two different phenomenological approaches. A phenomenological two state model is deduced from the master equation for an ensemble of two-level molecular systems. Using an alternative approach, we formulate the two-dimensional (2D) diffusion model as the free energy Fokker-Planck equation simplified for the limiting regime of purely in-plane reorientation. The models are employed to interpret the irradiation time dependence of the absorption order parameters extracted from the available experimental data by using the exact solution to the light transmission problem for a biaxially anisotropic absorbing layer. The transient photoinduced structures are found to be biaxially anisotropic whereas the photosteady and the initial states are uniaxial.Comment: revtex4, 34 pages, 9 figure

    MHz Unidirectional Rotation of Molecular Rotary Motors

    Get PDF
    A combination of cryogenic UV-vis and CD spectroscopy and transient absorption spectroscopy at ambient temperature is used to study a new class of unidirectional rotary molecular motors. Stabilization of unstable intermediates is achieved below 95 K in propane solution for the structure with the fastest rotation rate, and below this temperature measurements on the rate limiting step in the rotation cycle can be performed to obtain activation parameters. The results are compared to measurements at ambient temperature using transient absorption spectroscopy, which show that behavior of these motors is similar over the full temperature range investigated, thereby allowing a maximum rotation rate of 3 MHz at room temperature under suitable irradiation conditions

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Isolation, identification, characterization and in vitro assay of saline tolerant endophytes against groundnut root rot caused by Rhizoctonia bataticola (Taub.) Butler

    Get PDF
    Groundnut, known as Arachis hypogaea L., is India's significant oil seed crop. Dry root rot, caused by Rhizoctonia bataticola, poses a substantial challenge to cultivating groundnuts. During the roving survey, 60.50% dry root rot disease incidence was recorded in Namakkal district, Tamil Nadu. This study aims to acquire salt-tolerant endophytic bacteria residing in groundnuts with significant antagonistic activity against R. bataticola. A total of 27 bacterial strains were isolated from groundnuts. Among these strains, RMV 3 and RMV 2 are the most effective isolates, exhibiting 60.1% and 50% inhibition zones, respectively. The effective isolates were characterized through morphological, biochemical and phytostimulation activities and 16S rDNA sequencing. Among the isolates, RMV 3 and RMV 2 showed positive results for siderophore, indole acetic acid (IAA) and cellulase test. The strain RMV 3 was identified as Bacillus subtilis through 16S rDNA sequencing. GC-MS analysis identified twenty bioactive compounds produced by B. subtilis RMV 3, such as pyrrolo [12-a] pyrazine-14-dione hexahydro-3 (2-methylpropyl) and hexadecanoic acid methyl ester. The crude metabolite assay demonstrated a 96.6% inhibition of R. bataticola by RMV 3. This study demonstrated that Bacillus subtilis RMV 3, which exhibits a robust antagonistic effect on R. bataticola, can potentially be an effective biocontrol agent for groundnut dry root rot

    Quantitative evaluation of essential oils for the identification of chemical constituents by gas chromatography/mass spectrometry

    Get PDF
    Essential oils are greatly strenuous aromatic materials having various constituents. They are used in the preparation of various precious substances like making perfumes, medicines, cleaning agent, and aromatic treatment etc. The purpose of the present investigation was to identify the major and minor chemical constituent in eighteen essential oils viz., amyris, basil, black pepper, camphor, catnip, chamomile, cinnamon, citronella, dill, frankincense, galbanum, jasmine, juniper, lavender, peppermint, rosemary, tagetes and thyme with the help of gas chromatography /mass spectrometry (GC/MS). In eighteen essential oils the identified compounds studied by GC-MS contain various types of high and low molecular weights of chemical ingredients. Therefore, GC/MS efficiently and speedily screened all the volatile elements present in the essential oils for the quantitative use of these identified chemical constituents for various reasons

    Finite Element Analysis and Machine Learning Guided Design of Carbon Fiber Organosheet-based Battery Enclosures for Crashworthiness

    Full text link
    Carbon fiber composite can be a potential candidate for replacing metal-based battery enclosures of current electric vehicles (E.V.s) owing to its better strength-to-weight ratio and corrosion resistance. However, the strength of carbon fiber-based structures depends on several parameters that should be carefully chosen. In this work, we implemented high throughput finite element analysis (FEA) based thermoforming simulation to virtually manufacture the battery enclosure using different design and processing parameters. Subsequently, we performed virtual crash simulations to mimic a side pole crash to evaluate the crashworthiness of the battery enclosures. This high throughput crash simulation dataset was utilized to build predictive models to understand the crashworthiness of an unknown set. Our machine learning (ML) models showed excellent performance (R2 > 0.97) in predicting the crashworthiness metrics, i.e., crush load efficiency, absorbed energy, intrusion, and maximum deceleration during a crash. We believe that this FEA-ML work framework will be helpful in down select process parameters for carbon fiber-based component design and can be transferrable to other manufacturing technologies
    corecore