46 research outputs found

    Relationship of stream flow regime in the western Lake Superior basin to watershed type characteristics

    Get PDF
    To test a conceptual model of non-linear response of hydrologic regimes to watershed characteristics, we selected 48 secondand third-order study sites on the North and South Shores of western Lake Superior, MN(USA) using a random-stratified design based on hydrogeomorphic region, fraction mature forest, and fraction watershed storage (lakeCwetland area/watershed area). We calculated several commonly used hydrologic indices from discharge and velocity estimates, including daily flow indices, overall flood indices, low flow variables, and ratios or ranges of flow percentiles reflecting the nature of cumulative frequency distributions. Four principal components (PCs) explained 85.9 and 88.6% of the variation of flow metrics among second- and third-order stream sites, respectively. Axes of variation corresponded to a runoff vs. baseflow axis, flow variability, mean flow, and contrasts between flood duration and frequency. Analysis of velocity metrics for third-order streams yielded four PCs corresponding to mean or maximum velocity, Froude number, and inferred shear velocity, as well as spate frequencies vs. intervals associated with different velocity ranges. Using discriminant function analysis, we could discriminate among watershed classes based on region, mature forest, or watershed storage as a function of flow metrics. For second-order streams, median flow (Qs50) increased as watershed storage increased. North Shore streams showed a more skewed distribution and greater spread of discharge values than did South Shore streams for both stream orders, while third-order North Shore streams exhibited a higher frequency of spates. Independent of regional differences, loss of mature forest increased the range of variation between baseflow and peak flows, and depressed baseflow. Consistent with our initial model for watershed classification, Classification and Regression Tree (CART) analysis confirmed significant thresholds of change in flow metrics averaging between 0.506 and 0.636 for fraction mature forest and between 0.180 and 0.258 for fraction watershed storage

    Pseudo-arthrosis repair of a posterior cruciate ligament avulsion fracture

    Get PDF
    A pseudo-arthrosis repair of a 4-year-old bony avulsion fracture of the PCL using a minimally invasive technique, screw fixation, and bone grafting is reported. The case presented seems to be rather unique due to the fragment size and the approach for pseudo-arthrosis repair. There was a good functional result following minimally invasive pseudo-arthrosis repair of a posterior cruciate ligament avulsion fracture. There are no previous reports of similar pseudo-arthrosis repairs, and other authors report good results of delayed refixation of PCL avulsion fractures. Therefore, refixation and pseudo-arthrosis repair should be considered as a viable treatment

    Spatiotemporal scaling of North American continental interior wetlands: implications for shorebird conservation

    Get PDF
    Within interior North America, erratic weather patterns and heterogeneous wetland complexes cause wide spatio-temporal variation in the resources available to migrating shorebirds. Identifying the pattern-generating components of landscape-level resources and the scales at which shorebirds respond to these patterns will better facilitate conservation efforts for these species. We constructed descriptive models that identified weather variables associated with creating the spatio-temporal patterns of shorebird habitat in ten landscapes in north-central Oklahoma. We developed a metric capable of measuring the dynamic composition and configuration of shorebird habitat in the region and used field data to empirically estimate the spatial scale at which shorebirds respond to the amount and configuration of habitat. Precipitation, temperature, solar radiation and wind speed best explained the incidence of wetland habitat, but relationships varied among wetland types. Shorebird occurrence patterns were best explained by habitat density estimates at a 1.5 km scale. This model correctly classified 86 % of shorebird observations. At this scale, when habitat density was low, shorebirds occurred in 5 % of surveyed habitat patches but occurrence reached 60 % when habitat density was high. Our results suggest scale dependence in the habitat-use patterns of migratory shorebirds. We discuss potential implications of our results and how integrating this information into conservation efforts may improve conservation strategies and management practices

    Relationship of stream flow regime in the western Lake Superior basin to watershed type characteristics

    Get PDF
    To test a conceptual model of non-linear response of hydrologic regimes to watershed characteristics, we selected 48 secondand third-order study sites on the North and South Shores of western Lake Superior, MN(USA) using a random-stratified design based on hydrogeomorphic region, fraction mature forest, and fraction watershed storage (lakeCwetland area/watershed area). We calculated several commonly used hydrologic indices from discharge and velocity estimates, including daily flow indices, overall flood indices, low flow variables, and ratios or ranges of flow percentiles reflecting the nature of cumulative frequency distributions. Four principal components (PCs) explained 85.9 and 88.6% of the variation of flow metrics among second- and third-order stream sites, respectively. Axes of variation corresponded to a runoff vs. baseflow axis, flow variability, mean flow, and contrasts between flood duration and frequency. Analysis of velocity metrics for third-order streams yielded four PCs corresponding to mean or maximum velocity, Froude number, and inferred shear velocity, as well as spate frequencies vs. intervals associated with different velocity ranges. Using discriminant function analysis, we could discriminate among watershed classes based on region, mature forest, or watershed storage as a function of flow metrics. For second-order streams, median flow (Qs50) increased as watershed storage increased. North Shore streams showed a more skewed distribution and greater spread of discharge values than did South Shore streams for both stream orders, while third-order North Shore streams exhibited a higher frequency of spates. Independent of regional differences, loss of mature forest increased the range of variation between baseflow and peak flows, and depressed baseflow. Consistent with our initial model for watershed classification, Classification and Regression Tree (CART) analysis confirmed significant thresholds of change in flow metrics averaging between 0.506 and 0.636 for fraction mature forest and between 0.180 and 0.258 for fraction watershed storage
    corecore