202 research outputs found

    Active Membrane Fluctuations Studied by Micropipet Aspiration

    Get PDF
    We present a detailed analysis of the micropipet experiments recently reported in J-B. Manneville et al., Phys. Rev. Lett. 82, 4356--4359 (1999), including a derivation of the expected behaviour of the membrane tension as a function of the areal strain in the case of an active membrane, i.e., containing a nonequilibrium noise source. We give a general expression, which takes into account the effect of active centers both directly on the membrane, and on the embedding fluid dynamics, keeping track of the coupling between the density of active centers and the membrane curvature. The data of the micropipet experiments are well reproduced by the new expressions. In particular, we show that a natural choice of the parameters quantifying the strength of the active noise explains both the large amplitude of the observed effects and its remarkable insensitivity to the active-center density in the investigated range. [Submitted to Phys Rev E, 22 March 2001]Comment: 14 pages, 5 encapsulated Postscript figure

    Protein Conformational Changes in the Bacteriorhodopsin Photocycle: Comparison of Findings from Electron and X-Ray Crystallographic Analyses

    Get PDF
    Light-driven conformational changes in the membrane protein bacteriorhodopsin have been studied extensively using X-ray and electron crystallography, resulting in the deposition of >30 sets of coordinates describing structural changes at various stages of proton transport. Using projection difference Fourier maps, we show that coordinates reported by different groups for the same photocycle intermediates vary considerably in the extent and nature of conformational changes. The different structures reported for the same intermediate cannot be reconciled in terms of differing extents of change on a single conformational trajectory. New measurements of image phases obtained by cryo-electron microscopy of the D96G/F171C/F219L triple mutant provide independent validation for the description of the large protein conformational change derived at 3.2 Å resolution by electron crystallography of 2D crystals, but do not support atomic models for light-driven conformational changes derived using X-ray crystallography of 3D crystals. Our findings suggest that independent determination of phase information from 2D crystals can be an important tool for testing the accuracy of atomic models for membrane protein conformational changes

    Dependency of delta pH-relaxation across vesicular membranes on the buffering power of bulk solutions and lipids.

    No full text
    The dependency of delta pH-relaxation kinetics across the membrane of sonicated small phospholipid vesicles on the concentration of internally entrapped buffer has been investigated by means of the pH-indicator dye pyranine. A very high contribution of lipid headgroups to the internal buffering power of the liposomes is observed, amounting to an equivalent phosphate buffer concentration of 110 mM. This localized two-dimensional proton/hydroxide ion reservoir must be considered in any determination of the H+/OH- permeability coefficient. Furthermore, it could have significance for energy-transduction across biological membranes. From the established linear relation between delta pH-relaxation rates and buffering power, net H+/OH- permeabilities of 3 X 10(-3) cm/s for soybean phospholipid (SBPL) and 1 X 10(-4) cm/s for diphytanoyl phosphatidylcholine (diphytanoyl PC) vesicles at pH 7.2 as well as buffering powers per lipid molecule of 6 X 10(-2) (pH-unit)-1 (SBPL) and 4 X 10(-2) (pH-unit)-1 (diphytanoyl PC) are calculated. In the case of diphytanoyl PC vesicles, delta pH-decay is accelerated by the presence of chloride ions

    Surface bound optical probes monitor proton translocation and surface potential changes during the bacteriorhodopsin photocycle

    No full text
    Light-induced H+ release and reuptake as well as surface potential changes inherent in the bacterio-rhodopsin reaction cycle were measured between 10 degrees C and 50 degrees C. Signals of optical pH indicators covalently bound to Lys-129 at the extracellular surface of bacteriorhodopsin were compared with absorbance changes of probes residing in the aqueous bulk phase. Only surface-bound indicators monitor the kinetics of H+ ejection from bacteriorhodopsin and allow the correlation of the photocycle with the pumping cycle. During the L550----M412 transition the H+ appears at the extracellular surface of bacteriorhodopsin. Surface potential changes detected by bound fluorescein or by the potentiometric probe 4-[2-(di-n-butylamino)-6-naphthyl]vinyl-1-(3-sulfopropyl)pyridinium betaine (di-4-ANEPPS) occur in milliseconds concomitantly with the formation and decay of the N intermediate. pH indicators residing in the aqueous bulk phase reflect the transfer of H+ from the membrane surface into the bulk but do not probe the early events of H+ pumping. The observed retardation of H+ at the membrane surface for several hundred microseconds is of relevance for energy conversion of biological membranes powered by electrochemical H+ gradients
    corecore