10 research outputs found

    Copyrights and digitizing the systematic literature: the horror... the horror...

    Get PDF
    It is time for us to take full advantage of the investment that our societies have made in documenting the biodiversity of the world. It is time for us to fully, and legally, make systematic literature available worldwide. Using U.S. "Fair Use" guidelines, we can

    Evidence for hydrodynamic orientation by spiny lobsters in a patch reef environment

    Get PDF
    Western Atlantic spiny lobsters (Panulirus argus) are superb underwater navigators. Spiny lobsters perform dramatic seasonal offshore migrations and have also been shown to locate and home to specific den sites within the elaborate coral reef environment in which they live. How these animals perform such complex orientation tasks is not known. The study reported here was designed to explore the sensory mechanisms that spiny lobsters use to orient in and around a familiar patch reef environment. Our results show that, in the absence of visual cues, lobsters displaced a short (50 m) distance off the reef do not initially (i.e. within 20 min) travel towards their dens or return to the patch reef where their dens are located. Instead, the headings lobsters follow are significantly correlated to the direction of local hydrodynamic cues and, specifically, to the direction of approaching wave surge. Results from ultrasonic tracking experiments over longer periods (24 h) suggest that displaced lobsters are able to relocate the reef where they were captured, even without visual cues. These results suggest that hydrodynamic cues may provide useful and immediate directional information to lobsters within the local environment of the home reef

    A manager’s guide to using eDNA metabarcoding in marine ecosystems

    Get PDF
    Environmental DNA (eDNA) metabarcoding is a powerful tool that can enhance marine ecosystem/biodiversity monitoring programs. Here we outline five important steps managers and researchers should consider when developing eDNA monitoring program: (1) select genes and primers to target taxa; (2) assemble or develop comprehensive barcode reference databases; (3) apply rigorous site occupancy based decontamination pipelines; (4) conduct pilot studies to define spatial and temporal variance of eDNA; and (5) archive samples, extracts, and raw sequence data. We demonstrate the importance of each of these considerations using a case study of eDNA metabarcoding in the Ports of Los Angeles and Long Beach. eDNA metabarcoding approaches detected 94.1% (16/17) of species observed in paired trawl surveys while identifying an additional 55 native fishes, providing more comprehensive biodiversity inventories. Rigorous benchmarking of eDNA metabarcoding results improved ecological interpretation and confidence in species detections while providing archived genetic resources for future analyses. Well designed and validated eDNA metabarcoding approaches are ideally suited for biomonitoring applications that rely on the detection of species, including mapping invasive species fronts and endangered species habitats as well as tracking range shifts in response to climate change. Incorporating these considerations will enhance the utility and efficacy of eDNA metabarcoding for routine biomonitoring applications

    Copyrights and digitizing the systematic literature: the horror… the horror…

    Full text link

    Landscape analyses using eDNA metabarcoding and Earth observation predict community biodiversity in California

    No full text
    Ecosystems globally are under threat from ongoing anthropogenic environmental change. Effective conservation management requires more thorough biodiversity surveys that can reveal system-level patterns and that can be applied rapidly across space and time. Using modern ecological models and community science, we integrate environmental DNA and Earth observations to produce a time snapshot of regional biodiversity patterns and provide multi-scalar community-level characterization. We collected 278 samples in spring 2017 from coastal, shrub, and lowland forest sites in California, a complex ecosystem and biodiversity hotspot. We recovered 16,118 taxonomic entries from eDNA analyses and compiled associated traditional observations and environmental data to assess how well they predicted alpha, beta, and zeta diversity. We found that local habitat classification was diagnostic of community composition and distinct communities and organisms in different kingdoms are predicted by different environmental variables. Nonetheless, gradient forest models of 915 families recovered by eDNA analysis and using BIOCLIM variables, Sentinel-2 satellite data, human impact, and topographical features as predictors, explained 35% of the variance in community turnover. Elevation, sand percentage, and photosynthetic activities (NDVI32) were the top predictors. In addition to this signal of environmental filtering, we found a positive relationship between environmentally predicted families and their numbers of biotic interactions, suggesting environmental change could have a disproportionate effect on community networks. Together, these analyses show that coupling eDNA with environmental predictors including remote sensing data has capacity to test proposed Essential Biodiversity Variables and create new landscape biodiversity baselines that span the tree of life
    corecore