2,997 research outputs found
Pressure Shifts in High-Precision Hydrogen Spectroscopy: I. Long-Range Atom-Atom and Atom-Molecule Interactions
We study the theoretical foundations for the pressure shifts in
high-precision atomic beam spectrosopy of hydrogen, with a particular emphasis
on transitions involving higher excited P states. In particular, the long-range
interaction of an excited hydrogen atom in a 4P state with a ground-state and
metastable hydrogen atom is studied, with a full resolution of the hyperfine
structure. It is found that the full inclusion of the 4P_1/2 and 4P_3/2
manifolds becomes necessary in order to obtain reliable theoretical
predictions, because the 1S ground state hyperfine frequency is commensurate
with the 4P fine-structure splitting. An even more complex problem is
encountered in the case of the 4P-2S interaction, where the inclusion of
quasi-degenerate 4S-2P_1/2 state becomes necessary in view of the dipole
couplings induced by the van der Waals Hamiltonian. Matrices of dimension up to
40 have to be treated despite all efforts to reduce the problem to irreducible
submanifolds within the quasi-degenerate basis. We focus on the
phenomenologically important second-order van der Waals shifts, proportional to
1/R^6 where R is the interatomic distance, and obtain results with full
resolution of the hyperfine structure. The magnitude of van der Waals
coefficients for hydrogen atom-atom collisions involving excited P states is
drastically enhanced due to energetic quasi-degeneracy; we find no such
enhancement for atom-molecule collisions involving atomic nP states, even if
the complex molecular spectrum involving ro-vibrational levels requires a
deeper analysis.Comment: 32 pages; 2 figures; this is part 1 of a series of two papers; part 1
carries article number 075005, while part 2 carries article number 075006 in
the journal (online journal version has been rectified). arXiv admin note:
text overlap with arXiv:1711.1003
Micrometeorological processes driving snow ablation in an Alpine catchment
Mountain snow covers typically become patchy over the course of a melting season. The snow pattern during melt is mainly governed by the end of winter snow depth distribution and the local energy balance. The objective of this study is to investigate micrometeorological processes driving snow ablation in an Alpine catchment. For this purpose we combine a meteorological model (ARPS) with a fully distributed energy balance model (Alpine3D). Turbulent fluxes above melting snow are further investigated by using data from eddy-correlation systems. We compare modelled snow ablation to measured ablation rates as obtained from a series of Terrestrial Laser Scanning campaigns covering a complete ablation season. The measured ablation rates indicate that the advection of sensible heat causes locally increased ablation rates at the upwind edges of the snow patches. The effect, however, appears to be active over rather short distances except for very strong wind conditions. Neglecting this effect, the model is able to capture the mean ablation rates for early ablation periods but strongly overestimates snow ablation once the fraction of snow coverage is below a critical value. While radiation dominates snow ablation early in the season, the turbulent flux contribution becomes important late in the season. Simulation results indicate that the air temperatures appear to overestimate the local air temperature above snow patches once the snow coverage is below a critical value. Measured turbulent fluxes support these findings by suggesting a stable internal boundary layer close to the snow surface causing a strong decrease of the sensible heat flux towards the snow cover. Thus, the existence of a stable internal boundary layer above a patchy snow cover exerts a dominant control on the timing and magnitude of snow ablation for patchy snow covers.<br/
Dynamical Autler-Townes control of a phase qubit
Routers, switches, and repeaters are essential components of modern
information-processing systems. Similar devices will be needed in future
superconducting quantum computers. In this work we investigate experimentally
the time evolution of Autler-Townes splitting in a superconducting phase qubit
under the application of a control tone resonantly coupled to the second
transition. A three-level model that includes independently determined
parameters for relaxation and dephasing gives excellent agreement with the
experiment. The results demonstrate that the qubit can be used as a ON/OFF
switch with 100 ns operating time-scale for the reflection/transmission of
photons coming from an applied probe microwave tone. The ON state is realized
when the control tone is sufficiently strong to generate an Autler-Townes
doublet, suppressing the absorption of the probe tone photons and resulting in
a maximum of transmission.Comment: 8 pages, 8 figure
A research pathway for experimental psychopathology: the role of external validity criteria
This paper outlines a putative pathway for experimental psychopathology research developing psychological models of clinical disorders. The pathway uses established external validity criteria to define the pathway and clarifies the important role that research conducted on healthy participants can play in our understanding of clinical disorders. Defining a research pathway for experimental psychopathology in this way has a number of benefits It would (1) make explicit the need to address the external validity of developed models, (2) provide a clear set of criteria that would be required to extend research on healthy individuals to diagnostic populations, and (3) recommend using general psychological knowledge when developing models of psychopathology
Selective demarketing: When customers destroy value.
Selective demarketing is a strategic option for firms to manage customers who are or are likely to be a poor fit with its offering. Research has investigated related areas such as customer profitability and relationship dissolution but, as yet, studies have not offered a robust conceptualisation of selective demarketing. Based on research into value co-destruction, this study argues that these customers effectively destroy value by misusing or misunderstanding how to integrate their operant resources with those of the firm. As firms exist within a wider service system, this failure to integrate resonates throughout the system. To demarket selectively, firms use higher order operant resources to disengage and discourage these customers. This study offers a novel conceptualisation of selective demarketing and extends research on value destruction through adopting a firm and systems perspective
Watching me watching you: Black women in Britain on YouTube
YouTube and video bloggers (vloggers) have been a source of academic interest, yet few studies explore the representation or experiences of Black women on YouTube. The video blogs (vlogs) of Black women yield symbolic digital resources which young Black women may engage with in self-exploratory, self-educating, resistant and collective ways. This article reflects on 21 in-depth interviews with young Black women in Britain, aged 19–33 years. It addresses how their engagement with Black women’s vlogs intersects with identity and ideological work, including participation in Black digital diasporic dynamics. Influenced by research about Black women and media culture, resistant YouTube activity, as well as race and everyday uses of celebrity, this article explores the YouTube usage of young Black women in Britain, while reflecting on what this reveals about their lives in the early 21st century. This article forms part of ‘On the Move’, a special issue marking the twentieth anniversary of the European Journal of Cultural Studies
Analysis of symmetries in models of multi-strain infections
In mathematical studies of the dynamics of multi-strain diseases caused by antigenically diverse pathogens, there is a substantial interest in analytical insights. Using the example of a generic model of multi-strain diseases with cross-immunity between strains, we show that a significant understanding of the stability of steady states and possible dynamical behaviours can be achieved when the symmetry of interactions between strains is taken into account. Techniques of equivariant bifurcation theory allow one to identify the type of possible symmetry-breaking Hopf bifurcation, as well as to classify different periodic solutions in terms of their spatial and temporal symmetries. The approach is also illustrated on other models of multi-strain diseases, where the same methodology provides a systematic understanding of bifurcation scenarios and periodic behaviours. The results of the analysis are quite generic, and have wider implications for understanding the dynamics of a large class of models of multi-strain diseases
Stability of narrow beams in bulk Kerr-type nonlinear media
We consider (2+1)-dimensional beams, whose transverse size may be comparable
to or smaller than the carrier wavelength, on the basis of an extended version
of the nonlinear Schr\"{o}dinger equation derived from the Maxwell`s equations.
As this equation is very cumbersome, we also study, in parallel to it, its
simplified version which keeps the most essential term: the term which accounts
for the {\it nonlinear diffraction}. The full equation additionally includes
terms generated by a deviation from the paraxial approximation and by a
longitudinal electric-field component in the beam. Solitary-wave stationary
solutions to both the full and simplified equations are found, treating the
terms which modify the nonlinear Schr\"{o}dinger equation as perturbations.
Within the framework of the perturbative approach, a conserved power of the
beam is obtained in an explicit form. It is found that the nonlinear
diffraction affects stationary beams much stronger than nonparaxiality and
longitudinal field. Stability of the beams is directly tested by simulating the
simplified equation, with initial configurations taken as predicted by the
perturbation theory. The numerically generated solitary beams are always stable
and never start to collapse, although they display periodic internal
vibrations, whose amplitude decreases with the increase of the beam power.Comment: 7 pages, 6 figures Accepted for publication in PR
- …
