7,568 research outputs found

    Dark matter as integration constant in Horava-Lifshitz gravity

    Full text link
    In the non-relativistic theory of gravitation recently proposed by Horava, the Hamiltonian constraint is not a local equation satisfied at each spatial point but an equation integrated over a whole space. The global Hamiltonian constraint is less restrictive than its local version, and allows a richer set of solutions than in general relativity. We show that a component which behaves like pressureless dust emerges as an "integration constant" of dynamical equations and momentum constraint equations. Consequently, classical solutions to the infrared limit of Horava-Lifshitz gravity can mimic general relativity plus cold dark matter.Comment: 16 pages; (non-)conservation equation for "dark matter" added (v2); note added to comment on some recent preprints (v3); version accepted for publication in PRD (v4

    Spacetime Foam, Holographic Principle, and Black Hole Quantum Computers

    Full text link
    Spacetime foam, also known as quantum foam, has its origin in quantum fluctuations of spacetime. Arguably it is the source of the holographic principle, which severely limits how densely information can be packed in space. Its physics is also intimately linked to that of black holes and computation. In particular, the same underlying physics is shown to govern the computational power of black hole quantum computers.Comment: 8 pages, LaTeX; Talk given by Jack Ng, in celebration of Paul Frampton's 60th birthday, at the Coral Gables Conference (in Fort Lauderdale, Florida on December 17, 2003). To appear in the Proceedings of the 2003 Coral Gables Conferenc

    Quantum Entanglement and Communication Complexity

    Get PDF
    We consider a variation of the multi-party communication complexity scenario where the parties are supplied with an extra resource: particles in an entangled quantum state. We show that, although a prior quantum entanglement cannot be used to simulate a communication channel, it can reduce the communication complexity of functions in some cases. Specifically, we show that, for a particular function among three parties (each of which possesses part of the function's input), a prior quantum entanglement enables them to learn the value of the function with only three bits of communication occurring among the parties, whereas, without quantum entanglement, four bits of communication are necessary. We also show that, for a particular two-party probabilistic communication complexity problem, quantum entanglement results in less communication than is required with only classical random correlations (instead of quantum entanglement). These results are a noteworthy contrast to the well-known fact that quantum entanglement cannot be used to actually simulate communication among remote parties.Comment: 10 pages, latex, no figure
    • …
    corecore