356 research outputs found

    Annihilation of Charged Particles

    Full text link
    The kinetics of irreversible annihilation of charged particles performing overdamped motion induced by long-range interaction force, F(r)rλF(r)\sim r^{-\lambda}, is investigated. The system exhibits rich kinetic behaviors depending on the force exponent λ\lambda. In one dimension we find that the densities decay as t1/(2+λ)t^{-1/(2+\lambda)} and t1/(1+2λ)t^{-1/(1+2\lambda)} when λ>1\lambda>1 and 1/2<λ<11/2<\lambda<1, respectively, with logarithmic correction at λ=1\lambda=1. For λ1/2\lambda \leq 1/2, the asymptotic behavior is shown to be dependent on system size.Comment: 17 pages, plain TeX, 3 figures available upon request from [email protected]

    Realization of efficient quantum gates with a superconducting qubit-qutrit circuit

    Full text link
    Building a quantum computer is a daunting challenge since it requires good control but also good isolation from the environment to minimize decoherence. It is therefore important to realize quantum gates efficiently, using as few operations as possible, to reduce the amount of required control and operation time and thus improve the quantum state coherence. Here we propose a superconducting circuit for implementing a tunable system consisting of a qutrit coupled to two qubits. This system can efficiently accomplish various quantum information tasks, including generation of entanglement of the two qubits and conditional three-qubit quantum gates, such as the Toffoli and Fredkin gates. Furthermore, the system realizes a conditional geometric gate which may be used for holonomic (non-adiabatic) quantum computing. The efficiency, robustness and universality of the presented circuit makes it a promising candidate to serve as a building block for larger networks capable of performing involved quantum computational tasks.Comment: 27 pages including technical supplementary information, 9 figures, comments are most welcom

    1/\omega-flux-noise and dynamical critical properties of two-dimensional XY-models

    Full text link
    We have numerically studied the dynamic correlation functions in thermodynamic equilibrium of two-dimensional O(2)-symmetry models with either bond (RSJ) or site (TDGL) dissipation as a function of temperature T. We find that above the critical temperature the frequency dependent flux noise SΦ(ω)1+(ω/Ω)2α(T)/2S_{\Phi}(\omega)\sim \vert 1+ {(\omega/\Omega)}^2\vert^{-\alpha (T)/2}, with 0.85α(TDGL)(T)0.950.85\leq \alpha (TDGL)(T)\leq 0.95 and 1.17α(RSJ)(T)1.271.17 \leq \alpha (RSJ)(T) \leq 1.27, while the dynamic critical exponents z(TDGL)2.0z(TDGL)\sim 2.0 and z(RSJ)0.9z(RSJ)\sim 0.9. Contrary to expectation the TDGL results are in closer agreement with the experiments in Josephson-junction arrays by Shaw et al., than those from the RSJ model. We find that these results are related to anomalous vortex diffusion through vortex clusters.Comment: 4 pages Rev-Tex, two figures in postscript. To appear In Physical Review Letter

    Toward an Identification of Resources Influencing Habitat Use in a Multi-Specific Context

    Get PDF
    Interactions between animal behaviour and the environment are both shaping observed habitat use. Despite the importance of inter-specific interactions on the habitat use performed by individuals, most previous analyses have focused on case studies of single species. By focusing on two sympatric populations of large herbivores with contrasting body size, we went one step beyond by studying variation in home range size and identifying the factors involved in such variation, to define how habitat features such as resource heterogeneity, resource quality, and openness created by hurricane or forest managers, and constraints may influence habitat use at the individual level. We found a large variability among individual's home range size in both species, particularly in summer. Season appeared as the most important factor accounting for observed variation in home range size. Regarding habitat features, we found that (i) the proportion of area damaged by the hurricane was the only habitat component that inversely influenced roe deer home range size, (ii) this habitat type also influenced both diurnal and nocturnal red deer home range sizes, (iii) home range size of red deer during the day was inversely influenced by the biomass of their preferred plants, as were both diurnal and nocturnal core areas of the red deer home range, and (iv) we do not find any effect of resource heterogeneity on home range size in any case. Our results suggest that a particular habitat type (i.e. areas damaged by hurricane) can be used by individuals of sympatric species because it brings both protected and dietary resources. Thus, it is necessary to maintain the openness of these areas and to keep animal density quite low as observed in these hunted populations to limit competition between these sympatric populations of herbivores

    Will REDD+ safeguards mitigate corruption? Qualitative evidence from Southeast Asia

    Get PDF
    High levels of faith and finance are being invested in REDD+ as a promising global climate change mitigation policy. Since its inception in 2007, corruption has been viewed as a potential impediment to the achievement of REDD+ goals, partly motivating ‘safeguards’ rolled out as part of national REDD+ readiness activities. We compare corruption mitigation measures adopted as part of REDD+ safeguards, drawing on qualitative case evidence from three Southeast Asian countries that have recently piloted the scheme: Indonesia, the Philippines, and Vietnam. We find that while REDD+ safeguards adopt a conventional principal-agent approach to tackling corruption in the schemes, our case evidence confirms our theoretical expectation that REDD+ corruption risks are perceived to arise not only from principal-agent type problems: they are also linked to embedded pro-corruption social norms. This implies that REDD+ safeguards are likely to be at best partially effective against corruption, and at worst will not mitigate corruption at all

    An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients

    Get PDF
    Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum intensity projection (MIP) images from 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) baseline scans to predict the probability of time-to-progression (TTP) within 2&nbsp;years and compare it with the International Prognostic Index (IPI), i.e. a clinically used score. 296 DLBCL 18F-FDG PET/CT baseline scans collected from a prospective clinical trial (HOVON-84) were analysed. Cross-validation was performed using coronal and sagittal MIPs. An external dataset (340 DLBCL patients) was used to validate the model. Association between the probabilities, metabolic tumour volume and Dmaxbulk was assessed. Probabilities for PET scans with synthetically removed tumors were also assessed. The CNN provided a 2-year TTP prediction with an&nbsp;area under the curve (AUC) of 0.74, outperforming the IPI-based model (AUC = 0.68). Furthermore, high probabilities (&gt; 0.6) of the original MIPs were considerably decreased after removing the tumours (&lt; 0.4, generally). These findings suggest that MIP-based CNNs are able to predict treatment outcome in DLBCL
    corecore