14,724 research outputs found

    Cubic spline prewavelets on the four-directional mesh

    Get PDF
    In this paper, we design differentiable, two dimensional, piecewise polynomial cubic prewavelets of particularly small compact support. They are given in closed form, and provide stable, orthogonal decompositions of L^2(\RR^2). In particular, the splines we use in our prewavelet constructions give rise to stable bases of spline spaces that contain all cubic polynomials, whereas the more familiar box spline constructions cannot reproduce all cubic polynomials, unless resorting to a box spline of higher polynomial degree

    Canonical-basis solution of the Hartree-Fock-Bogoliubov equation on three-dimensional Cartesian mesh

    Full text link
    A method is presented to obtain the canonical-form solutions of the HFB equation for atomic nuclei with zero-range interactions like the Skyrme force. It is appropriate to describe pairing correlations in the continuum in coordinate-space representations. An improved gradient method is used for faster convergences under constraint of orthogonality between orbitals. To prevent high-lying orbitals to shrink into a spatial point, a repulsive momentum dependent force is introduced, which turns out to unveil the nature of high-lying canonical-basis orbitals. The asymptotic properties at large radius and the relation with quasiparticle states are discussed for the obtained canonical basis.Comment: 23 pages including 17 figures, REVTeX4, revised version, scheduled to appear in Phys. Rev. C, Vol.69, No.

    Structure of the vacuum states in the presence of isovector and isoscalar pairing correlations

    Get PDF
    The long standing problem of proton-neutron pairing and, in particular, the limitations imposed on the solutions by the available symmetries, is revisited. We look for solutions with non-vanishing expectation values of the proton, the neutron and the isoscalar gaps. For an equal number of protons and neutrons we find two solutions where the absolute values of proton and neutrons gaps are equal but have the same or opposite sign. The behavior and structure of these solutions differ for spin saturated (single l-shell) and spin unsaturared systems (single j-shell). In the former case the BCS results are checked against an exact calculation.Comment: 19 pages, 5 postscript figure

    Coherent imaging of a pure phase object with classical incoherent light

    Get PDF
    By using the ghost imaging technique, we experimentally demonstrate the reconstruction of the diffraction pattern of a {\em pure phase} object by using the classical correlation of incoherent thermal light split on a beam splitter. The results once again underline that entanglement is not a necessary feature of ghost imaging. The light we use is spatially highly incoherent with respect to the object (2μ\approx 2 \mum speckle size) and is produced by a pseudo-thermal source relying on the principle of near-field scattering. We show that in these conditions no information on the phase object can be retrieved by only measuring the light that passed through it, neither in a direct measurement nor in a Hanbury Brown-Twiss (HBT) scheme. In general, we show a remarkable complementarity between ghost imaging and the HBT scheme when dealing with a phase object.Comment: 13 pages, 11 figures. Published in Physical Review A. Replaced version fixes some problems with Figs. 1, 4 and 1

    Ghost Interference with Optical Parametric Amplifier

    Full text link
    The 'Ghost' interference experiment is analyzed when the source of entangled photons is a multimode Optical Parametric Amplifier(OPA) whose weak limit is the two-photon Spontaneous Parametric Downconversion(SPDC) beam. The visibility of the double-slit pattern is calculated, taking the finite coincidence time window of the photon counting detectors into account. It is found that the coincidence window and the bandwidth of light reaching the detectors play a crucial role in the loss of visibility on coincidence detection, not only in the 'Ghost' interference experiment but in all experiments involving coincidence detection. The differences between the loss of visibility with two-mode and multimode OPA sources is also discussed. PACS: 42.65.Yj, 42.50.Dv, 42.65.L

    Radio-wave propagation through a medium containing electron-density fluctuations described by an anisotropic Goldreich-Sridhar spectrum

    Full text link
    We study the propagation of radio waves through a medium possessing density fluctuations that are elongated along the ambient magnetic field and described by an anisotropic Goldreich-Sridhar power spectrum. We derive general formulas for the wave phase structure function, visibility, angular broadening, diffraction-pattern length scales, and scintillation time scale for arbitrary distributions of turbulence along the line of sight, and specialize these formulas to idealized cases.Comment: 25 pages, 3 figures, submitted to Ap

    Pairing and alpha-like quartet condensation in N=Z nuclei

    Get PDF
    We discuss the treatment of isovector pairing by an alpha-like quartet condensate which conserves exactly the particle number, the spin and the isospin. The results show that the quartet condensate describes accurately the isovector pairing correlations in the ground state of systems with an equal number of protons and neutronsComment: 4 pages, to appear in Journal of Physics: Conference Serie

    Localization of correlated fermions in optical lattices with speckle disorder

    Full text link
    Strongly correlated fermions in three- and two-dimensional optical lattices with experimentally realistic speckle disorder are investigated. We extend and apply the statistical dynamical mean-field theory, which treats local correlations non-perturbatively, to incorporate on-site and hopping-type randomness on equal footing. Localization due to disorder is detected via the probability distribution function of the local density of states. We obtain a complete paramagnetic ground state phase diagram for experimentally realistic parameters and find a strong suppression of the correlation-induced metal insulator transition due to disorder. Our results indicate that the Anderson-Mott and the Mott insulator are not continuously connected due to the specific character of speckle disorder. Furthermore, we discuss the effect of finite temperature on the single-particle spectral function.Comment: 12 pages, 16 figures, published versio

    Anderson Localization of Bogolyubov Quasiparticles in Interacting Bose-Einstein Condensates

    Full text link
    We study the Anderson localization of Bogolyubov quasiparticles in an interacting Bose-Einstein condensate (with healing length \xi) subjected to a random potential (with finite correlation length \sigma_R). We derive analytically the Lyapunov exponent as a function of the quasiparticle momentum k and we study the localization maximum k_{max}. For 1D speckle potentials, we find that k_{max} is proportional to 1/\xi when \xi is much larger than \sigma_R while k_{max} is proportional to 1/\sigma_R when \xi is much smaller than \sigma_R, and that the localization is strongest when \xi is of the order of \sigma_R. Numerical calculations support our analysis and our estimates indicate that the localization of the Bogolyubov quasiparticles is accessible in current experiments with ultracold atoms.Comment: published version (no significant changes compared to last version

    The stationary phase point method for transitional scattering: diffractive radio scintillation for pulsar

    Get PDF
    The stationary phase point (SPP) method in one-dimensional case is introduced to treat the diffractive scintillation. From weak scattering, where the SPP number N=1, to strong scattering (N\gg1), via transitional scattering regime (N\sim2,3), we find that the modulation index of intensity experiences the monotonically increasing from 0 to 1 with the scattering strength, characterized by the ratio of Fresnel scale \rf to diffractive scale \rdiff.Comment: Hanas Meeting paper, appear in ChJAA, 2006, 6, Su
    corecore