37,407 research outputs found
A model-based constraint on CO<sub>2</sub> fertilisation
We derive a constraint on the strength of CO2 fertilisation of the terrestrial biosphere through a “top-down” approach, calibrating Earth system model parameters constrained by the post-industrial increase of atmospheric CO2 concentration. We derive a probabilistic prediction for the globally averaged strength of CO2 fertilisation in nature, for the period 1850 to 2000 AD, implicitly net of other limiting factors such as nutrient availability. The approach yields an estimate that is independent of CO2 enrichment experiments. To achieve this, an essential requirement was the incorpo- ration of a land use change (LUC) scheme into the GENIE Earth system model. Using output from a 671-member ensemble of transient GENIE simulations, we build an emulator of the change in atmospheric CO2 concentration change since the preindustrial period. We use this emulator to sample the 28-dimensional input parameter space. A Bayesian calibration of the emulator output suggests that the increase in gross primary productivity (GPP) in response to a doubling of CO2 from preindustrial values is very likely (90 % confidence) to exceed 20 %, with a most likely value of 40–60 %. It is important to note that we do not represent all of the possible contributing mechanisms to the terrestrial sink. The missing processes are subsumed into our calibration of CO2 fertilisation, which therefore represents the combined effect of CO2 fertilisation and additional missing processes. If the missing processes are a net sink then our estimate represents an upper bound. We derive calibrated estimates of carbon fluxes that are consistent with existing estimates. The present-day land–atmosphere flux (1990–2000) is estimated at −0.7 GTC yr−1 (likely, 66 % confidence, in the range 0.4 to −1.7 GTC yr−1). The present-day ocean–atmosphere flux (1990–2000) is estimated to be −2.3 GTC yr−1 (likely in the range −1.8 to −2.7 GTC yr−1). We estimate cumulative net land emissions over the post-industrial period (land use change emissions net of the CO2 fertilisation and climate sinks) to be 66 GTC, likely to lie in the range 0 to 128 GTC
Eulerian spectral closures for isotropic turbulence using a time-ordered fluctuation-dissipation relation
Procedures for time-ordering the covariance function, as given in a previous
paper (K. Kiyani and W.D. McComb Phys. Rev. E 70, 066303 (2004)), are extended
and used to show that the response function associated at second order with the
Kraichnan-Wyld perturbation series can be determined by a local (in wavenumber)
energy balance. These time-ordering procedures also allow the two-time
formulation to be reduced to time-independent form by means of exponential
approximations and it is verified that the response equation does not have an
infra-red divergence at infinite Reynolds number. Lastly, single-time
Markovianised closure equations (stated in the previous paper above) are
derived and shown to be compatible with the Kolmogorov distribution without the
need to introduce an ad hoc constant.Comment: 12 page
Extraction efficiency of drifting electrons in a two-phase xenon time projection chamber
We present a measurement of the extraction efficiency of quasi-free electrons
from the liquid into the gas phase in a two-phase xenon time-projection
chamber. The measurements span a range of electric fields from 2.4 to 7.1 kV/cm
in the liquid xenon, corresponding to 4.5 to 13.1 kV/cm in the gaseous xenon.
Extraction efficiency continues to increase at the highest extraction fields,
implying that additional charge signal may be attained in two-phase xenon
detectors through careful high-voltage engineering of the gate-anode region
Microburst phenomena. I - Auroral zone X-rays
Balloon observations of auroral zone bremsstrahlung X-ray microburst
Analytical calculation of the Green's function and Drude weight for a correlated fermion-boson system
In classical Drude theory the conductivity is determined by the mass of the
propagating particles and the mean free path between two scattering events. For
a quantum particle this simple picture of diffusive transport loses relevance
if strong correlations dominate the particle motion. We study a situation where
the propagation of a fermionic particle is possible only through creation and
annihilation of local bosonic excitations. This correlated quantum transport
process is outside the Drude picture, since one cannot distinguish between free
propagation and intermittent scattering. The characterization of transport is
possible using the Drude weight obtained from the f-sum rule, although its
interpretation in terms of free mass and mean free path breaks down. For the
situation studied we calculate the Green's function and Drude weight using a
Green's functions expansion technique, and discuss their physical meaning.Comment: final version, minor correction
A Green's function decoupling scheme for the Edwards fermion-boson model
Holes in a Mott insulator are represented by spinless fermions in the
fermion-boson model introduced by Edwards. Although the physically interesting
regime is for low to moderate fermion density the model has interesting
properties over the whole density range. It has previously been studied at
half-filling in the one-dimensional (1D) case by numerical methods, in
particular exact diagonalization and density matrix renormalization group
(DMRG). In the present study the one-particle Green's function is calculated
analytically by means of a decoupling scheme for the equations of motion, valid
for arbitrary density in 1D, 2D and 3D with fairly large boson energy and zero
boson relaxation parameter. The Green's function is used to compute some ground
state properties, and the one-fermion spectral function, for fermion densities
n=0.1, 0.5 and 0.9 in the 1D case. The results are generally in good agreement
with numerical results obtained by DMRG and dynamical DMRG and new light is
shed on the nature of the ground state at different fillings. The Green's
function approximation is sufficiently successful in 1D to justify future
application to the 2D and 3D cases.Comment: 19 pages, 7 figures, final version with updated reference
Electronic structure and resistivity of the double exchange model
The double exchange (DE) model with quantum local spins S is studied; an
equation of motion approach is used and decoupling approximations analogous to
Hubbard's are made. Our approximate one-electron Green function G is exact in
the atomic limit of zero bandwidth for all S and band filling n, and as n->0
reduces to a dynamical coherent potential approximation (CPA) due to Kubo; we
regard our approximation as a many-body generalisation of Kubo's CPA. G is
calculated self-consistently for general S in the paramagnetic state and for
S=1/2 in a state of arbitrary magnetization. The electronic structure is
investigated and four bands per spin are obtained centred on the atomic limit
peaks of the spectral function. A resistivity formula appropriate to the model
is derived from the Kubo formula and the paramagnetic state resistivity rho is
calculated; insulating states are correctly obtained at n=0 and n=1 for strong
Hund coupling. Our prediction for rho is much too small to be consistent with
experiments on manganites so we agree with Millis et al that the bare DE model
is inadequate. We show that the agreement with experiment obtained by Furukawa
is due to his use of an unphysical density of states.Comment: 20 pages, 8 figures, submitted to J. Phys.: Condens. Matte
Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions
We present high statistics results for the structure of the nucleon from a
mixed-action calculation using 2+1 flavors of asqtad sea and domain wall
valence fermions. We perform extrapolations of our data based on different
chiral effective field theory schemes and compare our results with available
information from phenomenology. We discuss vector and axial form factors of the
nucleon, moments of generalized parton distributions, including moments of
forward parton distributions, and implications for the decomposition of the
nucleon spin.Comment: 68 pages, 47 figures. Main revision points: improved discussion of
chiral fits and systematic uncertainties, several minor refinements. Accepted
for publication in Phys.Rev.
Gap Domain Wall Fermions
I demonstrate that the chiral properties of Domain Wall Fermions (DWF) in the
large to intermediate lattice spacing regime of QCD, 1 to 2 GeV, are
significantly improved by adding to the action two standard Wilson fermions
with supercritical mass equal to the negative DWF five dimensional mass. Using
quenched DWF simulations I show that the eigenvalue spectrum of the transfer
matrix Hamiltonian develops a substantial gap and that the residual mass
decreases appreciatively. Furthermore, I confirm that topology changing remains
active and that the hadron spectrum of the added Wilson fermions is above the
lattice cutoff and therefore is irrelevant. I argue that this result should
also hold for dynamical DWF and furthermore that it should improve the chiral
properties of related fermion methods.Comment: 12 pages of text, 14 figures, added sect.6 on topology and reference
- …
