49,902 research outputs found

    Discrete Fourier Transform in Nanostructures using Scattering

    Full text link
    In this paper we show that the discrete Fourier transform can be performed by scattering a coherent particle or laser beam off a two-dimensional potential that has the shape of rings or peaks. After encoding the initial vector into the two-dimensional potential, the Fourier-transformed vector can be read out by detectors surrounding the potential. The wavelength of the laser beam determines the necessary accuracy of the 2D potential, which makes our method very fault-tolerant.Comment: 6 pages, 5 EPS figures, REVTe

    Searching for Oscillations in the Primordial Power Spectrum: Perturbative Approach (Paper I)

    Full text link
    In this first of two papers, we present a new method for searching for oscillatory features in the primordial power spectrum. A wide variety of models predict these features in one of two different flavors: logarithmically spaced oscillations and linearly spaced oscillations. The proposed method treats the oscillations as perturbations on top of the scale-invariant power spectrum, allowing us to vary all cosmological parameters. This perturbative approach reduces the computational requirements for the search as the transfer functions and their derivatives can be precomputed. We show that the most significant degeneracy in the analysis is between the distance to last scattering and the overall amplitude at low frequencies. For models with logarithmic oscillations, this degeneracy leads to an uncertainty in the phase. For linear spaced oscillations, it affects the frequency of the oscillations. In this first of two papers, we test our code on simulated Planck-like data, and show we are able to recover fiducial input oscillations with an amplitude of a few times order 10^{-2}. We apply the code to WMAP9-year data and confirm the existence of two intriguing resonant frequencies for log spaced oscillations. For linear spaced oscillations we find a single resonance peak. We use numerical simulations to assess the significance of these features and conclude that the data do not provide compelling evidence for the existence of oscillatory features in the primordial spectrum.Comment: 13 pages, 22 figures. Paper 1 of 2. Fixed typos, added reference

    Locating Decision Rights: Evidence from the Mutual Fund Industry

    Get PDF
    Mutual fund advisors make portfolio decisions for their funds on a daily basis. We examine the location of these portfolio decision rights on two dimensions. First, we consider the geographic location of the decision rights. Second, we consider whether the decision rights remain with an advisor or are allocated to an independent sub-advisor. We argue that the allocation of portfolio decision rights involves a tradeoff between the opportunity cost of not matching decision rights with specific knowledge, and the agency costs associated with moving the decision rights to the specific knowledge. The patterns in the location of decision rights are consistent with the tradeoff being a meaningful determinant of the allocation of decision rights in the mutual fund industry. We also find that funds that are predicted to be sub-advised and are sub-advised outperform those that are predicted to be sub-advised but are not

    Investor Behavior in the Mutual Fund Industry: Evidence from Gross Flows

    Get PDF
    Using a large sample of monthly gross flows from 1997 to 2003, we uncover several previously undocumented regularities in investor behavior. First, investor purchases and sales produce fund-level gross flows that are highly persistent. Persistence in fund flows dominates performance as a predictor of future fund flows. More importantly, failing to account for flow persistence leads to incorrect inferences with respect to the relation between performance and flows. Second, we document that investors react differently to performance depending on the type of fund, and that investor trading activity produces meaningful differences in the persistence of fund flows across mutual fund types. Third, at least some investors appear to evaluate and respond to mutual fund performance over much shorter time spans than previously assessed. Additionally, we document differences in the speed and magnitude of investors’ purchase and sales responses to performance

    Investors Do Respond to Poor Mutual Fund Performance: Evidence from Inflows and Outflows

    Get PDF
    Abstract We examine the relation between mutual fund performance and gross flows for a large sample of actively managed U.S. mutual funds. Unlike previous studies that have only examined periods of generally increasing net flows, our sample includes periods of both increasing and decreasing net flows. We find that outflows are related to performance, with investors withdrawing money from poor performers. We also find that outflows and inflows respond asymmetrically to performance, outflows increase more aggressively following poor performance, and inflows increase more aggressively following good performance. Additionally, we find a symmetric performance net flow relation

    Primordial Bispectrum Information from CMB Polarization

    Full text link
    After the precise observations of the Cosmic Microwave Background (CMB) anisotropy power spectrum, attention is now being focused on the higher order statistics of the CMB anisotropies. Since linear evolution preserves the statistical properties of the initial conditions, observed non-Gaussianity of the CMB will mirror primordial non-Gaussianity. Single field slow-roll inflation robustly predicts negligible non-Gaussianity so an indication of non-Gaussianity will suggest alternative scenarios need to be considered. In this paper we calculate the information on primordial non-Gaussianity encoded in the polarization of the CMB. After deriving the optimal weights for a cubic estimator we evaluate the Signal-to-Noise ratio of the estimator for WMAP, Planck and an ideal cosmic variance limited experiment. We find that when the experiment can observe CMB polarization with good sensitivity, the sensitivity to primordial non-Gaussianity increases by roughly a factor of two. We also test the weakly non-Gaussian assumption used to derive the optimal weight factor by calculating the degradation factor produced by the gravitational lensing induced connected four-point function. The physical scales in the radiative transfer functions are largely irrelevant for the constraints on the primordial non-Gaussianity. We show that the total (S/N)^2 is simply proportional to the number of observed pixels on the sky.Comment: To be submitted to PRD, 25 pages, 6 figure

    A unifying representation for a class of dependent random measures

    Full text link
    We present a general construction for dependent random measures based on thinning Poisson processes on an augmented space. The framework is not restricted to dependent versions of a specific nonparametric model, but can be applied to all models that can be represented using completely random measures. Several existing dependent random measures can be seen as specific cases of this framework. Interesting properties of the resulting measures are derived and the efficacy of the framework is demonstrated by constructing a covariate-dependent latent feature model and topic model that obtain superior predictive performance

    Nitrogen isotopic ratios in Barnard 1: a consistent study of the N2H+, NH3, CN, HCN and HNC isotopologues

    Full text link
    The 15N isotopologue abundance ratio measured today in different bodies of the solar system is thought to be connected to 15N-fractionation effects that would have occured in the protosolar nebula. The present study aims at putting constraints on the degree of 15N-fractionation that occurs during the prestellar phase, through observations of D, 13C and 15N-substituted isotopologues towards B1b. Both molecules from the nitrogen hydride family, i.e. N2H+ and NH3, and from the nitrile family, i.e. HCN, HNC and CN, are considered in the analysis. As a first step, we model the continuum emission in order to derive the physical structure of the cloud, i.e. gas temperature and H2 density. These parameters are subsequently used as an input in a non-local radiative transfer model to infer the radial abundances profiles of the various molecules. Our modeling shows that all the molecules are affected by depletion onto dust grains, in the region that encompasses the B1-bS and B1-bN cores. While high levels of deuterium fractionation are derived, we conclude that no fractionation occurs in the case of the nitrogen chemistry. Independently of the chemical family, the molecular abundances are consistent with 14N/15N~300, a value representative of the elemental atomic abundances of the parental gas. The inefficiency of the 15N-fractionation effects in the B1b region can be linked to the relatively high gas temperature ~17K which is representative of the innermost part of the cloud. Since this region shows signs of depletion onto dust grains, we can not exclude the possibility that the molecules were previously enriched in 15N, earlier in the B1b history, and that such an enrichment could have been incorporated into the ice mantles. It is thus necessary to repeat this kind of study in colder sources to test such a possibility.Comment: accepted in A&

    GRB Energetics in the Swift Era

    Full text link
    We examine the rest frame energetics of 76 gamma-ray bursts (GRBs) with known redshift that were detected by the Swift spacecraft and monitored by the satellite's X-ray Telescope (XRT). Using the bolometric fluence values estimated in Butler et al. 2007b and the last XRT observation for each event, we set a lower limit the their collimation corrected energy Eg and find that a 68% of our sample are at high enough redshift and/or low enough fluence to accommodate a jet break occurring beyond the last XRT observation and still be consistent with the pre-Swift Eg distribution for long GRBs. We find that relatively few of the X-ray light curves for the remaining events show evidence for late-time decay slopes that are consistent with that expected from post jet break emission. The breaks in the X-ray light curves that do exist tend to be shallower and occur earlier than the breaks previously observed in optical light curves, yielding a Eg distribution that is far lower than the pre-Swift distribution. If these early X-ray breaks are not due to jet effects, then a small but significant fraction of our sample have lower limits to their collimation corrected energy that place them well above the pre-Swift Eg distribution. Either scenario would necessitate a much wider post-Swift Eg distribution for long cosmological GRBs compared to the narrow standard energy deduced from pre-Swift observations. We note that almost all of the pre-Swift Eg estimates come from jet breaks detected in the optical whereas our sample is limited entirely to X-ray wavelengths, furthering the suggestion that the assumed achromaticity of jet breaks may not extend to high energies.Comment: 30 pages, 10 figures, Accepted to Ap
    corecore