33 research outputs found

    Design, construction, and quality tests of the large Al-alloy mandrels for the CMS coil

    Get PDF
    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. Almost all large indirectly cooled solenoids constructed to date (e.g., Zeus, Aleph, Delphi, Finuda, Babar) comprise Al-alloy mandrels fabricated by welding together plates bent to the correct radius. The external cylinder of CMS will consist of five modules having an inner diameter of 6.8 m, a thickness of 50 mm and an individual length of 2.5 m. It will be manufactured by bending and welding thick plates (75 mm) of the strain hardened aluminum alloy EN AW-5083-H321. The required high geometrical tolerances and mechanical strength (a yield strength of 209 MPa at 4.2 K) impose a critical appraisal of the design, the fabrication techniques, the welding procedures and the quality controls. The thick flanges at both ends of each module will be fabricated as seamless rolled rings, circumferentially welded to the body of the modules. The developed procedures and manufacturing methods will be validated by the construction of a prototype mandrel of full diameter and reduced length (670 mm). (7 refs)

    Metabolic Effects Associated with ICS in Patients with COPD and Comorbid Type 2 Diabetes: A Historical Matched Cohort Study

    Get PDF
    Background Management guidelines for chronic obstructive pulmonary disease (COPD) recommend that inhaled corticosteroids (ICS) are prescribed to patients with the most severe symptoms. However, these guidelines have not been widely implemented by physicians, leading to widespread use of ICS in patients with mild-to-moderate COPD. Of particular concern is the potential risk of worsening diabetic control associated with ICS use. Here we investigate whether ICS therapy in patients with COPD and comorbid type 2 diabetes mellitus (T2DM) has a negative impact on diabetic control, and whether these negative effects are dose-dependent. Methods and Findings This was a historical matched cohort study utilising primary care medical record data from two large UK databases. We selected patients aged >= 40 years with COPD and T2DM, prescribed ICS (n = 1360) or non-ICS therapy (n = 2642) between 2008 and 2012. The primary endpoint was change in HbA(1c) between the baseline and outcome periods. After 1:1 matching, each cohort consisted of 682 patients. Over the 12-18-month outcome period, patients prescribed ICS had significantly greater increases in HbA1c values compared with those prescribed non-ICS therapies; adjusted difference 0.16% (95% confidence interval [Cl]: 0.05-0.27%) in all COPD patients, and 0.25% (95% Cl: 0.10-0.40%) in mild-to-moderate COPD patients. Patients in the ICS cohort also had significantly more diabetes-related general practice visits per year and received more frequent glucose strip prescriptions, compared with those prescribed non-ICS therapies. Patients prescribed higher cumulative doses of ICS (> 250 mg) had greater odds of increased HbA(1c) and/or receiving additional antidiabetic medication, and increased odds of being above the Quality and Outcomes Framework (QOF) target for HbA1c levels, compared with those prescribed lower cumulative doses ( Conclusion For patients with COPD and comorbid T2DM, ICS therapy may have a negative impact on diabetes control. Patients prescribed higher cumulative doses of ICS may be at greater risk of diabetes progression

    Benefits of glycopyrrolate/formoterol fumarate metered dose inhaler (GFF MDI) in improving lung function and reducing exacerbations in patients with moderate-to-very severe COPD:a pooled analysis of the PINNACLE studies

    Get PDF
    Background: The Phase III PINNACLE studies assessed the efficacy and safety of glycopyrrolate/formoterol fumarate metered dose inhaler (GFF MDI), a dual long-acting bronchodilator for chronic obstructive pulmonary disease (COPD). Here we present a pre-specified pooled analysis of PINNACLE-1, PINNACLE-2, and PINNACLE-4.Methods: PINNACLE-1, -2, and -4 were multicenter, double-blind, randomized controlled trials that enrolled patients with moderate-to-very severe COPD, with no requirement for exacerbation history or a high symptom burden. Patients received GFF MDI 18/9.6 μg, glycopyrrolate (GP) MDI 18 μg, formoterol fumarate (FF) MDI 9.6 μg, or placebo MDI, twice-daily for 24 weeks. The primary endpoint of the pooled analysis was the change from baseline in morning pre-dose trough forced expiratory volume in 1 s (FEV1) at week 24. Secondary endpoints included COPD exacerbations and clinically important deterioration (CID). Adverse events were also assessed.Results: The pooled intent-to-treat population included 4983 patients; of these, 61.9% had a COPD assessment test (CAT) score ≥15, and 25.0% had experienced ≥1 moderate/severe exacerbation in the past year. At week 24, GFF MDI improved morning pre-dose trough FEV1 versus GP MDI (least squares mean [LSM] difference [95% confidence interval (CI)]: 59 mL [43, 75]), FF MDI (65 mL [48, 81]), and placebo MDI (146 mL [125, 166]); all p &lt; 0.0001. GFF MDI reduced the risk of a moderate/severe exacerbation by 18% (p = 0.0168), 15% (p = 0.0628), and 28% (p = 0.0012) compared with GP MDI, FF MDI, and placebo MDI, respectively. In general, exacerbation risk reduction with GFF MDI versus comparators was greater in subgroups of symptomatic patients (CAT ≥15) and those who had an exacerbation history, than in the pooled intent-to-treat population. The risk of CID was also lower with GFF MDI versus GP MDI (23% decrease), FF MDI (17%), and placebo MDI (49%); all p &lt; 0.0001. All treatments were well tolerated, with no unexpected safety signals.Conclusions: This pooled analysis of the PINNACLE studies demonstrated that GFF MDI improved lung function and reduced the risk of exacerbations compared with monocomponents and placebo in patients with COPD. Exacerbation reductions with GFF MDI versus comparators were generally greater in patients with higher symptom burden and those with exacerbation history.Trial registration: ClinicalTrials.gov NCT01854645, NCT01854658, and NCT02343458. Registered 13 May 2013 (NCT01854645, NCT01854658) and 6 January 2015 (NCT02343458).</p

    The winding line for the CMS reinforced conductor

    No full text
    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the length is 12.5 m and the free bore is 6 m. The use of a reinforced conductor for the CMS coil required a sustained activity of development at industrial level, to understand how to handle, to pre-bend and to wind the conductor with an inner winding technique. The winding line was designed and constructed according to this experience. The working principles of the line are under test through the winding of a prototype of a CMS coil module. The prototype has the same radius of a CMS module (6900 mm outer diameter), but a shorter axial length (670 mm against 2500 for the module). The critical operations are related to the accurate pre-bending of the conductor, the positioning of the turns into the winding, the axial compaction, and the correct handling of 50-ton windings. (9 refs)
    corecore